diff --git a/earth/earth.jpg b/earth/earth.jpg
new file mode 100644
index 0000000..00e9928
Binary files /dev/null and b/earth/earth.jpg differ
diff --git a/earth/earth.js b/earth/earth.js
new file mode 100644
index 0000000..bf86db6
--- /dev/null
+++ b/earth/earth.js
@@ -0,0 +1,28 @@
+/**
+ * Implentation of the earth.
+ * Texture from https://upload.wikimedia.org/wikipedia/commons/d/d6/Nasa_land_ocean_ice_8192.jpg
+ */
+
+import * as THREE from '/website/node_modules/three/build/three.module.js';
+
+
+const pi = 3;
+
+const earthTexture = new THREE.TextureLoader().load('/website/earth/earth.jpg');
+const earthSphere = new THREE.SphereGeometry(7, 32, 16);
+const material = new THREE.MeshStandardMaterial({ map: earthTexture });
+export const earth = new THREE.Mesh( earthSphere, material );
+export const pivot = new THREE.Object3D();
+
+earth.add(pivot);
+
+earth.position.x = -60;
+
+var forward = true;
+
+export function rotation(){
+ earth.rotation.y += 0.01;
+ pivot.rotation.x += 0.01;
+ //pivot.rotation.y += 0.005;
+ //pivot.rotation.z += 0.01;
+}
diff --git a/index.html b/index.html
new file mode 100644
index 0000000..5970503
--- /dev/null
+++ b/index.html
@@ -0,0 +1,13 @@
+
+
+
+
+
+
+
+ Threejs Demonstration
+
+
+
+
+
diff --git a/main.js b/main.js
new file mode 100644
index 0000000..5b8e5d4
--- /dev/null
+++ b/main.js
@@ -0,0 +1,100 @@
+/**
+ * Texturen von https://www.solarsystemscope.com/textures/
+ */
+
+import * as THREE from '/website/node_modules/three/build/three.module.js';
+import * as EARTH from '/website/earth/earth.js';
+import * as MOON from '/website/moon/moon.js';
+import { OrbitControls } from '/website/node_modules/three/examples/jsm/controls/OrbitControls.js';
+
+
+// Die Szenerie erstellen
+const scene = new THREE.Scene();
+const camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000);
+
+const renderer = new THREE.WebGLRenderer({
+ canvas: document.querySelector('#bg'),
+});
+
+renderer.setPixelRatio(window.devicePixelRatio);
+renderer.setSize(window.innerWidth, window.innerHeight);
+camera.position.setZ(30);
+camera.position.setX(30);
+camera.position.setY(30);
+
+// Die Sonne
+const sunTexture = new THREE.TextureLoader().load('sun.jpg')
+const sunSphere = new THREE.SphereGeometry(15, 32, 16);
+const material = new THREE.MeshBasicMaterial({ map: sunTexture });
+const sun = new THREE.Mesh( sunSphere, material );
+
+const pivot = new THREE.Object3D();
+sun.add(pivot);
+
+pivot.add(EARTH.earth);
+EARTH.pivot.add(MOON.moon)
+
+scene.add( sun );
+
+
+// licht
+const pointLight = new THREE.PointLight(0xffffff);
+//pointLight.position.set(5,5,5);
+const ambientLight = new THREE.PointLight(0xffffff);
+
+//Steuerung & Kamera
+const controls = new OrbitControls( camera, renderer.domElement );
+
+//Sterne
+function addStar(){
+ const starSphere = new THREE.SphereGeometry(0.25,4,4)
+ const material = new THREE.MeshStandardMaterial( { color: 0xffffff } )
+ const star = new THREE.Mesh( starSphere, material);
+
+ const [x,y,z] = Array(3).fill().map(() => THREE.MathUtils.randFloatSpread(400));
+ star.position.set(x,y,z);
+ scene.add(star);
+}
+
+Array(200).fill().forEach(addStar);
+
+//Skybox
+const spaceTexture = new THREE.TextureLoader().load('spacebackground.jpg');
+scene.background = spaceTexture;
+
+//helper
+const lightHelper = new THREE.PointLightHelper(pointLight);
+const gridHelper = new THREE.GridHelper(200,50)
+
+// Die Objekte in der scene hinzufügen
+scene.add(pointLight);
+//scene.add(lightHelper);
+//scene.add(gridHelper);
+scene.add(ambientLight);
+
+//Planeten hinzufuegen
+//scene.add(EARTH.earth)
+//scene.add(MOON.moon)
+
+
+renderer.render( scene, camera );
+
+/**
+ * Game Loop
+ */
+function animate() {
+ requestAnimationFrame( animate );
+
+ sun.rotation.x += 0.001;
+ sun.rotation.y += 0.005;
+ sun.rotation.z += 0.001;
+ EARTH.rotation();
+ //MOON.rotation();
+ pivot.rotation.y += 0.01;
+ controls.update();
+ renderer.render( scene, camera );
+
+}
+
+animate();
+
diff --git a/moon/moon.jpg b/moon/moon.jpg
new file mode 100644
index 0000000..8a1de86
Binary files /dev/null and b/moon/moon.jpg differ
diff --git a/moon/moon.js b/moon/moon.js
new file mode 100644
index 0000000..9c6683a
--- /dev/null
+++ b/moon/moon.js
@@ -0,0 +1,27 @@
+/**
+ * Implentation of the earth.
+ * Texture from https://upload.wikimedia.org/wikipedia/commons/d/d6/Nasa_land_ocean_ice_8192.jpg
+ */
+
+import * as THREE from '/website/node_modules/three/build/three.module.js';
+
+
+const pi = 3;
+
+const moonTexture = new THREE.TextureLoader().load('/website/moon/moon.jpg');
+const moonSphere = new THREE.SphereGeometry(3, 32, 16);
+const material = new THREE.MeshStandardMaterial({ map: moonTexture });
+export const moon = new THREE.Mesh( moonSphere, material );
+
+moon.position.x = -15;
+moon.position.z = 10;
+
+export function rotation(){
+ moon.rotation.y += 0.01;
+ moon.rotation.z += 0.01;
+}
+
+function forward(){
+
+}
+
diff --git a/node_modules/.package-lock.json b/node_modules/.package-lock.json
new file mode 100644
index 0000000..7a6e6a8
--- /dev/null
+++ b/node_modules/.package-lock.json
@@ -0,0 +1,13 @@
+{
+ "name": "website",
+ "version": "1.0.0",
+ "lockfileVersion": 2,
+ "requires": true,
+ "packages": {
+ "node_modules/three": {
+ "version": "0.136.0",
+ "resolved": "https://registry.npmjs.org/three/-/three-0.136.0.tgz",
+ "integrity": "sha512-+fEMX7nYLz2ZesVP/dyifli5Jf8gR3XPAnFJveQ80aMhibFduzrADnjMbARXh8+W9qLK7rshJCjAIL/6cDxC+A=="
+ }
+ }
+}
diff --git a/node_modules/three/LICENSE b/node_modules/three/LICENSE
new file mode 100644
index 0000000..5303437
--- /dev/null
+++ b/node_modules/three/LICENSE
@@ -0,0 +1,21 @@
+The MIT License
+
+Copyright © 2010-2021 three.js authors
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE.
diff --git a/node_modules/three/README.md b/node_modules/three/README.md
new file mode 100644
index 0000000..17f64b6
--- /dev/null
+++ b/node_modules/three/README.md
@@ -0,0 +1,86 @@
+three.js
+========
+
+[![NPM Package][npm]][npm-url]
+[![Build Size][build-size]][build-size-url]
+[![NPM Downloads][npm-downloads]][npmtrends-url]
+[![Language Grade][lgtm]][lgtm-url]
+
+#### JavaScript 3D library ####
+
+The aim of the project is to create an easy to use, lightweight, cross-browser, general purpose 3D library. The current builds only include a WebGL renderer but WebGPU (experimental), SVG and CSS3D renderers are also available in the examples.
+
+[Examples](https://threejs.org/examples/) —
+[Documentation](https://threejs.org/docs/) —
+[Wiki](https://github.com/mrdoob/three.js/wiki) —
+[Migrating](https://github.com/mrdoob/three.js/wiki/Migration-Guide) —
+[Questions](http://stackoverflow.com/questions/tagged/three.js) —
+[Forum](https://discourse.threejs.org/) —
+[Slack](https://join.slack.com/t/threejs/shared_invite/zt-rnuegz5e-FQpc6YboDVW~5idlp7GfDw) —
+[Discord](https://discordapp.com/invite/HF4UdyF)
+
+### Usage ###
+
+This code creates a scene, a camera, and a geometric cube, and it adds the cube to the scene. It then creates a `WebGL` renderer for the scene and camera, and it adds that viewport to the `document.body` element. Finally, it animates the cube within the scene for the camera.
+
+```javascript
+import * as THREE from './js/three.module.js';
+
+let camera, scene, renderer;
+let geometry, material, mesh;
+
+init();
+
+function init() {
+
+ camera = new THREE.PerspectiveCamera( 70, window.innerWidth / window.innerHeight, 0.01, 10 );
+ camera.position.z = 1;
+
+ scene = new THREE.Scene();
+
+ geometry = new THREE.BoxGeometry( 0.2, 0.2, 0.2 );
+ material = new THREE.MeshNormalMaterial();
+
+ mesh = new THREE.Mesh( geometry, material );
+ scene.add( mesh );
+
+ renderer = new THREE.WebGLRenderer( { antialias: true } );
+ renderer.setSize( window.innerWidth, window.innerHeight );
+ renderer.setAnimationLoop( animation );
+ document.body.appendChild( renderer.domElement );
+
+}
+
+function animation( time ) {
+
+ mesh.rotation.x = time / 2000;
+ mesh.rotation.y = time / 1000;
+
+ renderer.render( scene, camera );
+
+}
+```
+
+If everything went well, you should see [this](https://jsfiddle.net/vy29n6aj/).
+
+### Cloning this repository ###
+
+Cloning the repo with all its history results in a ~2 GB download. If you don't need the whole history you can use the `depth` parameter to significantly reduce download size.
+
+```sh
+git clone --depth=1 https://github.com/mrdoob/three.js.git
+```
+
+### Change log ###
+
+[Releases](https://github.com/mrdoob/three.js/releases)
+
+
+[npm]: https://img.shields.io/npm/v/three
+[npm-url]: https://www.npmjs.com/package/three
+[build-size]: https://badgen.net/bundlephobia/minzip/three
+[build-size-url]: https://bundlephobia.com/result?p=three
+[npm-downloads]: https://img.shields.io/npm/dw/three
+[npmtrends-url]: https://www.npmtrends.com/three
+[lgtm]: https://img.shields.io/lgtm/alerts/github/mrdoob/three.js
+[lgtm-url]: https://lgtm.com/projects/g/mrdoob/three.js/
diff --git a/node_modules/three/build/three.js b/node_modules/three/build/three.js
new file mode 100644
index 0000000..fb4e6bb
--- /dev/null
+++ b/node_modules/three/build/three.js
@@ -0,0 +1,36678 @@
+/**
+ * @license
+ * Copyright 2010-2021 Three.js Authors
+ * SPDX-License-Identifier: MIT
+ */
+(function (global, factory) {
+ typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
+ typeof define === 'function' && define.amd ? define(['exports'], factory) :
+ (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.THREE = {}));
+})(this, (function (exports) { 'use strict';
+
+ const REVISION = '136';
+ const MOUSE = {
+ LEFT: 0,
+ MIDDLE: 1,
+ RIGHT: 2,
+ ROTATE: 0,
+ DOLLY: 1,
+ PAN: 2
+ };
+ const TOUCH = {
+ ROTATE: 0,
+ PAN: 1,
+ DOLLY_PAN: 2,
+ DOLLY_ROTATE: 3
+ };
+ const CullFaceNone = 0;
+ const CullFaceBack = 1;
+ const CullFaceFront = 2;
+ const CullFaceFrontBack = 3;
+ const BasicShadowMap = 0;
+ const PCFShadowMap = 1;
+ const PCFSoftShadowMap = 2;
+ const VSMShadowMap = 3;
+ const FrontSide = 0;
+ const BackSide = 1;
+ const DoubleSide = 2;
+ const FlatShading = 1;
+ const SmoothShading = 2;
+ const NoBlending = 0;
+ const NormalBlending = 1;
+ const AdditiveBlending = 2;
+ const SubtractiveBlending = 3;
+ const MultiplyBlending = 4;
+ const CustomBlending = 5;
+ const AddEquation = 100;
+ const SubtractEquation = 101;
+ const ReverseSubtractEquation = 102;
+ const MinEquation = 103;
+ const MaxEquation = 104;
+ const ZeroFactor = 200;
+ const OneFactor = 201;
+ const SrcColorFactor = 202;
+ const OneMinusSrcColorFactor = 203;
+ const SrcAlphaFactor = 204;
+ const OneMinusSrcAlphaFactor = 205;
+ const DstAlphaFactor = 206;
+ const OneMinusDstAlphaFactor = 207;
+ const DstColorFactor = 208;
+ const OneMinusDstColorFactor = 209;
+ const SrcAlphaSaturateFactor = 210;
+ const NeverDepth = 0;
+ const AlwaysDepth = 1;
+ const LessDepth = 2;
+ const LessEqualDepth = 3;
+ const EqualDepth = 4;
+ const GreaterEqualDepth = 5;
+ const GreaterDepth = 6;
+ const NotEqualDepth = 7;
+ const MultiplyOperation = 0;
+ const MixOperation = 1;
+ const AddOperation = 2;
+ const NoToneMapping = 0;
+ const LinearToneMapping = 1;
+ const ReinhardToneMapping = 2;
+ const CineonToneMapping = 3;
+ const ACESFilmicToneMapping = 4;
+ const CustomToneMapping = 5;
+ const UVMapping = 300;
+ const CubeReflectionMapping = 301;
+ const CubeRefractionMapping = 302;
+ const EquirectangularReflectionMapping = 303;
+ const EquirectangularRefractionMapping = 304;
+ const CubeUVReflectionMapping = 306;
+ const CubeUVRefractionMapping = 307;
+ const RepeatWrapping = 1000;
+ const ClampToEdgeWrapping = 1001;
+ const MirroredRepeatWrapping = 1002;
+ const NearestFilter = 1003;
+ const NearestMipmapNearestFilter = 1004;
+ const NearestMipMapNearestFilter = 1004;
+ const NearestMipmapLinearFilter = 1005;
+ const NearestMipMapLinearFilter = 1005;
+ const LinearFilter = 1006;
+ const LinearMipmapNearestFilter = 1007;
+ const LinearMipMapNearestFilter = 1007;
+ const LinearMipmapLinearFilter = 1008;
+ const LinearMipMapLinearFilter = 1008;
+ const UnsignedByteType = 1009;
+ const ByteType = 1010;
+ const ShortType = 1011;
+ const UnsignedShortType = 1012;
+ const IntType = 1013;
+ const UnsignedIntType = 1014;
+ const FloatType = 1015;
+ const HalfFloatType = 1016;
+ const UnsignedShort4444Type = 1017;
+ const UnsignedShort5551Type = 1018;
+ const UnsignedShort565Type = 1019;
+ const UnsignedInt248Type = 1020;
+ const AlphaFormat = 1021;
+ const RGBFormat = 1022;
+ const RGBAFormat = 1023;
+ const LuminanceFormat = 1024;
+ const LuminanceAlphaFormat = 1025;
+ const DepthFormat = 1026;
+ const DepthStencilFormat = 1027;
+ const RedFormat = 1028;
+ const RedIntegerFormat = 1029;
+ const RGFormat = 1030;
+ const RGIntegerFormat = 1031;
+ const RGBIntegerFormat = 1032;
+ const RGBAIntegerFormat = 1033;
+ const RGB_S3TC_DXT1_Format = 33776;
+ const RGBA_S3TC_DXT1_Format = 33777;
+ const RGBA_S3TC_DXT3_Format = 33778;
+ const RGBA_S3TC_DXT5_Format = 33779;
+ const RGB_PVRTC_4BPPV1_Format = 35840;
+ const RGB_PVRTC_2BPPV1_Format = 35841;
+ const RGBA_PVRTC_4BPPV1_Format = 35842;
+ const RGBA_PVRTC_2BPPV1_Format = 35843;
+ const RGB_ETC1_Format = 36196;
+ const RGB_ETC2_Format = 37492;
+ const RGBA_ETC2_EAC_Format = 37496;
+ const RGBA_ASTC_4x4_Format = 37808;
+ const RGBA_ASTC_5x4_Format = 37809;
+ const RGBA_ASTC_5x5_Format = 37810;
+ const RGBA_ASTC_6x5_Format = 37811;
+ const RGBA_ASTC_6x6_Format = 37812;
+ const RGBA_ASTC_8x5_Format = 37813;
+ const RGBA_ASTC_8x6_Format = 37814;
+ const RGBA_ASTC_8x8_Format = 37815;
+ const RGBA_ASTC_10x5_Format = 37816;
+ const RGBA_ASTC_10x6_Format = 37817;
+ const RGBA_ASTC_10x8_Format = 37818;
+ const RGBA_ASTC_10x10_Format = 37819;
+ const RGBA_ASTC_12x10_Format = 37820;
+ const RGBA_ASTC_12x12_Format = 37821;
+ const RGBA_BPTC_Format = 36492;
+ const SRGB8_ALPHA8_ASTC_4x4_Format = 37840;
+ const SRGB8_ALPHA8_ASTC_5x4_Format = 37841;
+ const SRGB8_ALPHA8_ASTC_5x5_Format = 37842;
+ const SRGB8_ALPHA8_ASTC_6x5_Format = 37843;
+ const SRGB8_ALPHA8_ASTC_6x6_Format = 37844;
+ const SRGB8_ALPHA8_ASTC_8x5_Format = 37845;
+ const SRGB8_ALPHA8_ASTC_8x6_Format = 37846;
+ const SRGB8_ALPHA8_ASTC_8x8_Format = 37847;
+ const SRGB8_ALPHA8_ASTC_10x5_Format = 37848;
+ const SRGB8_ALPHA8_ASTC_10x6_Format = 37849;
+ const SRGB8_ALPHA8_ASTC_10x8_Format = 37850;
+ const SRGB8_ALPHA8_ASTC_10x10_Format = 37851;
+ const SRGB8_ALPHA8_ASTC_12x10_Format = 37852;
+ const SRGB8_ALPHA8_ASTC_12x12_Format = 37853;
+ const LoopOnce = 2200;
+ const LoopRepeat = 2201;
+ const LoopPingPong = 2202;
+ const InterpolateDiscrete = 2300;
+ const InterpolateLinear = 2301;
+ const InterpolateSmooth = 2302;
+ const ZeroCurvatureEnding = 2400;
+ const ZeroSlopeEnding = 2401;
+ const WrapAroundEnding = 2402;
+ const NormalAnimationBlendMode = 2500;
+ const AdditiveAnimationBlendMode = 2501;
+ const TrianglesDrawMode = 0;
+ const TriangleStripDrawMode = 1;
+ const TriangleFanDrawMode = 2;
+ const LinearEncoding = 3000;
+ const sRGBEncoding = 3001;
+ const BasicDepthPacking = 3200;
+ const RGBADepthPacking = 3201;
+ const TangentSpaceNormalMap = 0;
+ const ObjectSpaceNormalMap = 1;
+ const ZeroStencilOp = 0;
+ const KeepStencilOp = 7680;
+ const ReplaceStencilOp = 7681;
+ const IncrementStencilOp = 7682;
+ const DecrementStencilOp = 7683;
+ const IncrementWrapStencilOp = 34055;
+ const DecrementWrapStencilOp = 34056;
+ const InvertStencilOp = 5386;
+ const NeverStencilFunc = 512;
+ const LessStencilFunc = 513;
+ const EqualStencilFunc = 514;
+ const LessEqualStencilFunc = 515;
+ const GreaterStencilFunc = 516;
+ const NotEqualStencilFunc = 517;
+ const GreaterEqualStencilFunc = 518;
+ const AlwaysStencilFunc = 519;
+ const StaticDrawUsage = 35044;
+ const DynamicDrawUsage = 35048;
+ const StreamDrawUsage = 35040;
+ const StaticReadUsage = 35045;
+ const DynamicReadUsage = 35049;
+ const StreamReadUsage = 35041;
+ const StaticCopyUsage = 35046;
+ const DynamicCopyUsage = 35050;
+ const StreamCopyUsage = 35042;
+ const GLSL1 = '100';
+ const GLSL3 = '300 es';
+
+ /**
+ * https://github.com/mrdoob/eventdispatcher.js/
+ */
+ class EventDispatcher {
+ addEventListener(type, listener) {
+ if (this._listeners === undefined) this._listeners = {};
+ const listeners = this._listeners;
+
+ if (listeners[type] === undefined) {
+ listeners[type] = [];
+ }
+
+ if (listeners[type].indexOf(listener) === -1) {
+ listeners[type].push(listener);
+ }
+ }
+
+ hasEventListener(type, listener) {
+ if (this._listeners === undefined) return false;
+ const listeners = this._listeners;
+ return listeners[type] !== undefined && listeners[type].indexOf(listener) !== -1;
+ }
+
+ removeEventListener(type, listener) {
+ if (this._listeners === undefined) return;
+ const listeners = this._listeners;
+ const listenerArray = listeners[type];
+
+ if (listenerArray !== undefined) {
+ const index = listenerArray.indexOf(listener);
+
+ if (index !== -1) {
+ listenerArray.splice(index, 1);
+ }
+ }
+ }
+
+ dispatchEvent(event) {
+ if (this._listeners === undefined) return;
+ const listeners = this._listeners;
+ const listenerArray = listeners[event.type];
+
+ if (listenerArray !== undefined) {
+ event.target = this; // Make a copy, in case listeners are removed while iterating.
+
+ const array = listenerArray.slice(0);
+
+ for (let i = 0, l = array.length; i < l; i++) {
+ array[i].call(this, event);
+ }
+
+ event.target = null;
+ }
+ }
+
+ }
+
+ const _lut = [];
+
+ for (let i = 0; i < 256; i++) {
+ _lut[i] = (i < 16 ? '0' : '') + i.toString(16);
+ }
+
+ let _seed = 1234567;
+ const DEG2RAD = Math.PI / 180;
+ const RAD2DEG = 180 / Math.PI; // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136
+
+ function generateUUID() {
+ const d0 = Math.random() * 0xffffffff | 0;
+ const d1 = Math.random() * 0xffffffff | 0;
+ const d2 = Math.random() * 0xffffffff | 0;
+ const d3 = Math.random() * 0xffffffff | 0;
+ const uuid = _lut[d0 & 0xff] + _lut[d0 >> 8 & 0xff] + _lut[d0 >> 16 & 0xff] + _lut[d0 >> 24 & 0xff] + '-' + _lut[d1 & 0xff] + _lut[d1 >> 8 & 0xff] + '-' + _lut[d1 >> 16 & 0x0f | 0x40] + _lut[d1 >> 24 & 0xff] + '-' + _lut[d2 & 0x3f | 0x80] + _lut[d2 >> 8 & 0xff] + '-' + _lut[d2 >> 16 & 0xff] + _lut[d2 >> 24 & 0xff] + _lut[d3 & 0xff] + _lut[d3 >> 8 & 0xff] + _lut[d3 >> 16 & 0xff] + _lut[d3 >> 24 & 0xff]; // .toUpperCase() here flattens concatenated strings to save heap memory space.
+
+ return uuid.toUpperCase();
+ }
+
+ function clamp(value, min, max) {
+ return Math.max(min, Math.min(max, value));
+ } // compute euclidian modulo of m % n
+ // https://en.wikipedia.org/wiki/Modulo_operation
+
+
+ function euclideanModulo(n, m) {
+ return (n % m + m) % m;
+ } // Linear mapping from range to range
+
+
+ function mapLinear(x, a1, a2, b1, b2) {
+ return b1 + (x - a1) * (b2 - b1) / (a2 - a1);
+ } // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/
+
+
+ function inverseLerp(x, y, value) {
+ if (x !== y) {
+ return (value - x) / (y - x);
+ } else {
+ return 0;
+ }
+ } // https://en.wikipedia.org/wiki/Linear_interpolation
+
+
+ function lerp(x, y, t) {
+ return (1 - t) * x + t * y;
+ } // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/
+
+
+ function damp(x, y, lambda, dt) {
+ return lerp(x, y, 1 - Math.exp(-lambda * dt));
+ } // https://www.desmos.com/calculator/vcsjnyz7x4
+
+
+ function pingpong(x, length = 1) {
+ return length - Math.abs(euclideanModulo(x, length * 2) - length);
+ } // http://en.wikipedia.org/wiki/Smoothstep
+
+
+ function smoothstep(x, min, max) {
+ if (x <= min) return 0;
+ if (x >= max) return 1;
+ x = (x - min) / (max - min);
+ return x * x * (3 - 2 * x);
+ }
+
+ function smootherstep(x, min, max) {
+ if (x <= min) return 0;
+ if (x >= max) return 1;
+ x = (x - min) / (max - min);
+ return x * x * x * (x * (x * 6 - 15) + 10);
+ } // Random integer from interval
+
+
+ function randInt(low, high) {
+ return low + Math.floor(Math.random() * (high - low + 1));
+ } // Random float from interval
+
+
+ function randFloat(low, high) {
+ return low + Math.random() * (high - low);
+ } // Random float from <-range/2, range/2> interval
+
+
+ function randFloatSpread(range) {
+ return range * (0.5 - Math.random());
+ } // Deterministic pseudo-random float in the interval [ 0, 1 ]
+
+
+ function seededRandom(s) {
+ if (s !== undefined) _seed = s % 2147483647; // Park-Miller algorithm
+
+ _seed = _seed * 16807 % 2147483647;
+ return (_seed - 1) / 2147483646;
+ }
+
+ function degToRad(degrees) {
+ return degrees * DEG2RAD;
+ }
+
+ function radToDeg(radians) {
+ return radians * RAD2DEG;
+ }
+
+ function isPowerOfTwo(value) {
+ return (value & value - 1) === 0 && value !== 0;
+ }
+
+ function ceilPowerOfTwo(value) {
+ return Math.pow(2, Math.ceil(Math.log(value) / Math.LN2));
+ }
+
+ function floorPowerOfTwo(value) {
+ return Math.pow(2, Math.floor(Math.log(value) / Math.LN2));
+ }
+
+ function setQuaternionFromProperEuler(q, a, b, c, order) {
+ // Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles
+ // rotations are applied to the axes in the order specified by 'order'
+ // rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c'
+ // angles are in radians
+ const cos = Math.cos;
+ const sin = Math.sin;
+ const c2 = cos(b / 2);
+ const s2 = sin(b / 2);
+ const c13 = cos((a + c) / 2);
+ const s13 = sin((a + c) / 2);
+ const c1_3 = cos((a - c) / 2);
+ const s1_3 = sin((a - c) / 2);
+ const c3_1 = cos((c - a) / 2);
+ const s3_1 = sin((c - a) / 2);
+
+ switch (order) {
+ case 'XYX':
+ q.set(c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13);
+ break;
+
+ case 'YZY':
+ q.set(s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13);
+ break;
+
+ case 'ZXZ':
+ q.set(s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13);
+ break;
+
+ case 'XZX':
+ q.set(c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13);
+ break;
+
+ case 'YXY':
+ q.set(s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13);
+ break;
+
+ case 'ZYZ':
+ q.set(s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13);
+ break;
+
+ default:
+ console.warn('THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order);
+ }
+ }
+
+ var MathUtils = /*#__PURE__*/Object.freeze({
+ __proto__: null,
+ DEG2RAD: DEG2RAD,
+ RAD2DEG: RAD2DEG,
+ generateUUID: generateUUID,
+ clamp: clamp,
+ euclideanModulo: euclideanModulo,
+ mapLinear: mapLinear,
+ inverseLerp: inverseLerp,
+ lerp: lerp,
+ damp: damp,
+ pingpong: pingpong,
+ smoothstep: smoothstep,
+ smootherstep: smootherstep,
+ randInt: randInt,
+ randFloat: randFloat,
+ randFloatSpread: randFloatSpread,
+ seededRandom: seededRandom,
+ degToRad: degToRad,
+ radToDeg: radToDeg,
+ isPowerOfTwo: isPowerOfTwo,
+ ceilPowerOfTwo: ceilPowerOfTwo,
+ floorPowerOfTwo: floorPowerOfTwo,
+ setQuaternionFromProperEuler: setQuaternionFromProperEuler
+ });
+
+ class Vector2 {
+ constructor(x = 0, y = 0) {
+ this.x = x;
+ this.y = y;
+ }
+
+ get width() {
+ return this.x;
+ }
+
+ set width(value) {
+ this.x = value;
+ }
+
+ get height() {
+ return this.y;
+ }
+
+ set height(value) {
+ this.y = value;
+ }
+
+ set(x, y) {
+ this.x = x;
+ this.y = y;
+ return this;
+ }
+
+ setScalar(scalar) {
+ this.x = scalar;
+ this.y = scalar;
+ return this;
+ }
+
+ setX(x) {
+ this.x = x;
+ return this;
+ }
+
+ setY(y) {
+ this.y = y;
+ return this;
+ }
+
+ setComponent(index, value) {
+ switch (index) {
+ case 0:
+ this.x = value;
+ break;
+
+ case 1:
+ this.y = value;
+ break;
+
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
+
+ return this;
+ }
+
+ getComponent(index) {
+ switch (index) {
+ case 0:
+ return this.x;
+
+ case 1:
+ return this.y;
+
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
+ }
+
+ clone() {
+ return new this.constructor(this.x, this.y);
+ }
+
+ copy(v) {
+ this.x = v.x;
+ this.y = v.y;
+ return this;
+ }
+
+ add(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
+ return this.addVectors(v, w);
+ }
+
+ this.x += v.x;
+ this.y += v.y;
+ return this;
+ }
+
+ addScalar(s) {
+ this.x += s;
+ this.y += s;
+ return this;
+ }
+
+ addVectors(a, b) {
+ this.x = a.x + b.x;
+ this.y = a.y + b.y;
+ return this;
+ }
+
+ addScaledVector(v, s) {
+ this.x += v.x * s;
+ this.y += v.y * s;
+ return this;
+ }
+
+ sub(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
+ return this.subVectors(v, w);
+ }
+
+ this.x -= v.x;
+ this.y -= v.y;
+ return this;
+ }
+
+ subScalar(s) {
+ this.x -= s;
+ this.y -= s;
+ return this;
+ }
+
+ subVectors(a, b) {
+ this.x = a.x - b.x;
+ this.y = a.y - b.y;
+ return this;
+ }
+
+ multiply(v) {
+ this.x *= v.x;
+ this.y *= v.y;
+ return this;
+ }
+
+ multiplyScalar(scalar) {
+ this.x *= scalar;
+ this.y *= scalar;
+ return this;
+ }
+
+ divide(v) {
+ this.x /= v.x;
+ this.y /= v.y;
+ return this;
+ }
+
+ divideScalar(scalar) {
+ return this.multiplyScalar(1 / scalar);
+ }
+
+ applyMatrix3(m) {
+ const x = this.x,
+ y = this.y;
+ const e = m.elements;
+ this.x = e[0] * x + e[3] * y + e[6];
+ this.y = e[1] * x + e[4] * y + e[7];
+ return this;
+ }
+
+ min(v) {
+ this.x = Math.min(this.x, v.x);
+ this.y = Math.min(this.y, v.y);
+ return this;
+ }
+
+ max(v) {
+ this.x = Math.max(this.x, v.x);
+ this.y = Math.max(this.y, v.y);
+ return this;
+ }
+
+ clamp(min, max) {
+ // assumes min < max, componentwise
+ this.x = Math.max(min.x, Math.min(max.x, this.x));
+ this.y = Math.max(min.y, Math.min(max.y, this.y));
+ return this;
+ }
+
+ clampScalar(minVal, maxVal) {
+ this.x = Math.max(minVal, Math.min(maxVal, this.x));
+ this.y = Math.max(minVal, Math.min(maxVal, this.y));
+ return this;
+ }
+
+ clampLength(min, max) {
+ const length = this.length();
+ return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
+ }
+
+ floor() {
+ this.x = Math.floor(this.x);
+ this.y = Math.floor(this.y);
+ return this;
+ }
+
+ ceil() {
+ this.x = Math.ceil(this.x);
+ this.y = Math.ceil(this.y);
+ return this;
+ }
+
+ round() {
+ this.x = Math.round(this.x);
+ this.y = Math.round(this.y);
+ return this;
+ }
+
+ roundToZero() {
+ this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
+ this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
+ return this;
+ }
+
+ negate() {
+ this.x = -this.x;
+ this.y = -this.y;
+ return this;
+ }
+
+ dot(v) {
+ return this.x * v.x + this.y * v.y;
+ }
+
+ cross(v) {
+ return this.x * v.y - this.y * v.x;
+ }
+
+ lengthSq() {
+ return this.x * this.x + this.y * this.y;
+ }
+
+ length() {
+ return Math.sqrt(this.x * this.x + this.y * this.y);
+ }
+
+ manhattanLength() {
+ return Math.abs(this.x) + Math.abs(this.y);
+ }
+
+ normalize() {
+ return this.divideScalar(this.length() || 1);
+ }
+
+ angle() {
+ // computes the angle in radians with respect to the positive x-axis
+ const angle = Math.atan2(-this.y, -this.x) + Math.PI;
+ return angle;
+ }
+
+ distanceTo(v) {
+ return Math.sqrt(this.distanceToSquared(v));
+ }
+
+ distanceToSquared(v) {
+ const dx = this.x - v.x,
+ dy = this.y - v.y;
+ return dx * dx + dy * dy;
+ }
+
+ manhattanDistanceTo(v) {
+ return Math.abs(this.x - v.x) + Math.abs(this.y - v.y);
+ }
+
+ setLength(length) {
+ return this.normalize().multiplyScalar(length);
+ }
+
+ lerp(v, alpha) {
+ this.x += (v.x - this.x) * alpha;
+ this.y += (v.y - this.y) * alpha;
+ return this;
+ }
+
+ lerpVectors(v1, v2, alpha) {
+ this.x = v1.x + (v2.x - v1.x) * alpha;
+ this.y = v1.y + (v2.y - v1.y) * alpha;
+ return this;
+ }
+
+ equals(v) {
+ return v.x === this.x && v.y === this.y;
+ }
+
+ fromArray(array, offset = 0) {
+ this.x = array[offset];
+ this.y = array[offset + 1];
+ return this;
+ }
+
+ toArray(array = [], offset = 0) {
+ array[offset] = this.x;
+ array[offset + 1] = this.y;
+ return array;
+ }
+
+ fromBufferAttribute(attribute, index, offset) {
+ if (offset !== undefined) {
+ console.warn('THREE.Vector2: offset has been removed from .fromBufferAttribute().');
+ }
+
+ this.x = attribute.getX(index);
+ this.y = attribute.getY(index);
+ return this;
+ }
+
+ rotateAround(center, angle) {
+ const c = Math.cos(angle),
+ s = Math.sin(angle);
+ const x = this.x - center.x;
+ const y = this.y - center.y;
+ this.x = x * c - y * s + center.x;
+ this.y = x * s + y * c + center.y;
+ return this;
+ }
+
+ random() {
+ this.x = Math.random();
+ this.y = Math.random();
+ return this;
+ }
+
+ *[Symbol.iterator]() {
+ yield this.x;
+ yield this.y;
+ }
+
+ }
+
+ Vector2.prototype.isVector2 = true;
+
+ class Matrix3 {
+ constructor() {
+ this.elements = [1, 0, 0, 0, 1, 0, 0, 0, 1];
+
+ if (arguments.length > 0) {
+ console.error('THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.');
+ }
+ }
+
+ set(n11, n12, n13, n21, n22, n23, n31, n32, n33) {
+ const te = this.elements;
+ te[0] = n11;
+ te[1] = n21;
+ te[2] = n31;
+ te[3] = n12;
+ te[4] = n22;
+ te[5] = n32;
+ te[6] = n13;
+ te[7] = n23;
+ te[8] = n33;
+ return this;
+ }
+
+ identity() {
+ this.set(1, 0, 0, 0, 1, 0, 0, 0, 1);
+ return this;
+ }
+
+ copy(m) {
+ const te = this.elements;
+ const me = m.elements;
+ te[0] = me[0];
+ te[1] = me[1];
+ te[2] = me[2];
+ te[3] = me[3];
+ te[4] = me[4];
+ te[5] = me[5];
+ te[6] = me[6];
+ te[7] = me[7];
+ te[8] = me[8];
+ return this;
+ }
+
+ extractBasis(xAxis, yAxis, zAxis) {
+ xAxis.setFromMatrix3Column(this, 0);
+ yAxis.setFromMatrix3Column(this, 1);
+ zAxis.setFromMatrix3Column(this, 2);
+ return this;
+ }
+
+ setFromMatrix4(m) {
+ const me = m.elements;
+ this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10]);
+ return this;
+ }
+
+ multiply(m) {
+ return this.multiplyMatrices(this, m);
+ }
+
+ premultiply(m) {
+ return this.multiplyMatrices(m, this);
+ }
+
+ multiplyMatrices(a, b) {
+ const ae = a.elements;
+ const be = b.elements;
+ const te = this.elements;
+ const a11 = ae[0],
+ a12 = ae[3],
+ a13 = ae[6];
+ const a21 = ae[1],
+ a22 = ae[4],
+ a23 = ae[7];
+ const a31 = ae[2],
+ a32 = ae[5],
+ a33 = ae[8];
+ const b11 = be[0],
+ b12 = be[3],
+ b13 = be[6];
+ const b21 = be[1],
+ b22 = be[4],
+ b23 = be[7];
+ const b31 = be[2],
+ b32 = be[5],
+ b33 = be[8];
+ te[0] = a11 * b11 + a12 * b21 + a13 * b31;
+ te[3] = a11 * b12 + a12 * b22 + a13 * b32;
+ te[6] = a11 * b13 + a12 * b23 + a13 * b33;
+ te[1] = a21 * b11 + a22 * b21 + a23 * b31;
+ te[4] = a21 * b12 + a22 * b22 + a23 * b32;
+ te[7] = a21 * b13 + a22 * b23 + a23 * b33;
+ te[2] = a31 * b11 + a32 * b21 + a33 * b31;
+ te[5] = a31 * b12 + a32 * b22 + a33 * b32;
+ te[8] = a31 * b13 + a32 * b23 + a33 * b33;
+ return this;
+ }
+
+ multiplyScalar(s) {
+ const te = this.elements;
+ te[0] *= s;
+ te[3] *= s;
+ te[6] *= s;
+ te[1] *= s;
+ te[4] *= s;
+ te[7] *= s;
+ te[2] *= s;
+ te[5] *= s;
+ te[8] *= s;
+ return this;
+ }
+
+ determinant() {
+ const te = this.elements;
+ const a = te[0],
+ b = te[1],
+ c = te[2],
+ d = te[3],
+ e = te[4],
+ f = te[5],
+ g = te[6],
+ h = te[7],
+ i = te[8];
+ return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
+ }
+
+ invert() {
+ const te = this.elements,
+ n11 = te[0],
+ n21 = te[1],
+ n31 = te[2],
+ n12 = te[3],
+ n22 = te[4],
+ n32 = te[5],
+ n13 = te[6],
+ n23 = te[7],
+ n33 = te[8],
+ t11 = n33 * n22 - n32 * n23,
+ t12 = n32 * n13 - n33 * n12,
+ t13 = n23 * n12 - n22 * n13,
+ det = n11 * t11 + n21 * t12 + n31 * t13;
+ if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0);
+ const detInv = 1 / det;
+ te[0] = t11 * detInv;
+ te[1] = (n31 * n23 - n33 * n21) * detInv;
+ te[2] = (n32 * n21 - n31 * n22) * detInv;
+ te[3] = t12 * detInv;
+ te[4] = (n33 * n11 - n31 * n13) * detInv;
+ te[5] = (n31 * n12 - n32 * n11) * detInv;
+ te[6] = t13 * detInv;
+ te[7] = (n21 * n13 - n23 * n11) * detInv;
+ te[8] = (n22 * n11 - n21 * n12) * detInv;
+ return this;
+ }
+
+ transpose() {
+ let tmp;
+ const m = this.elements;
+ tmp = m[1];
+ m[1] = m[3];
+ m[3] = tmp;
+ tmp = m[2];
+ m[2] = m[6];
+ m[6] = tmp;
+ tmp = m[5];
+ m[5] = m[7];
+ m[7] = tmp;
+ return this;
+ }
+
+ getNormalMatrix(matrix4) {
+ return this.setFromMatrix4(matrix4).invert().transpose();
+ }
+
+ transposeIntoArray(r) {
+ const m = this.elements;
+ r[0] = m[0];
+ r[1] = m[3];
+ r[2] = m[6];
+ r[3] = m[1];
+ r[4] = m[4];
+ r[5] = m[7];
+ r[6] = m[2];
+ r[7] = m[5];
+ r[8] = m[8];
+ return this;
+ }
+
+ setUvTransform(tx, ty, sx, sy, rotation, cx, cy) {
+ const c = Math.cos(rotation);
+ const s = Math.sin(rotation);
+ this.set(sx * c, sx * s, -sx * (c * cx + s * cy) + cx + tx, -sy * s, sy * c, -sy * (-s * cx + c * cy) + cy + ty, 0, 0, 1);
+ return this;
+ }
+
+ scale(sx, sy) {
+ const te = this.elements;
+ te[0] *= sx;
+ te[3] *= sx;
+ te[6] *= sx;
+ te[1] *= sy;
+ te[4] *= sy;
+ te[7] *= sy;
+ return this;
+ }
+
+ rotate(theta) {
+ const c = Math.cos(theta);
+ const s = Math.sin(theta);
+ const te = this.elements;
+ const a11 = te[0],
+ a12 = te[3],
+ a13 = te[6];
+ const a21 = te[1],
+ a22 = te[4],
+ a23 = te[7];
+ te[0] = c * a11 + s * a21;
+ te[3] = c * a12 + s * a22;
+ te[6] = c * a13 + s * a23;
+ te[1] = -s * a11 + c * a21;
+ te[4] = -s * a12 + c * a22;
+ te[7] = -s * a13 + c * a23;
+ return this;
+ }
+
+ translate(tx, ty) {
+ const te = this.elements;
+ te[0] += tx * te[2];
+ te[3] += tx * te[5];
+ te[6] += tx * te[8];
+ te[1] += ty * te[2];
+ te[4] += ty * te[5];
+ te[7] += ty * te[8];
+ return this;
+ }
+
+ equals(matrix) {
+ const te = this.elements;
+ const me = matrix.elements;
+
+ for (let i = 0; i < 9; i++) {
+ if (te[i] !== me[i]) return false;
+ }
+
+ return true;
+ }
+
+ fromArray(array, offset = 0) {
+ for (let i = 0; i < 9; i++) {
+ this.elements[i] = array[i + offset];
+ }
+
+ return this;
+ }
+
+ toArray(array = [], offset = 0) {
+ const te = this.elements;
+ array[offset] = te[0];
+ array[offset + 1] = te[1];
+ array[offset + 2] = te[2];
+ array[offset + 3] = te[3];
+ array[offset + 4] = te[4];
+ array[offset + 5] = te[5];
+ array[offset + 6] = te[6];
+ array[offset + 7] = te[7];
+ array[offset + 8] = te[8];
+ return array;
+ }
+
+ clone() {
+ return new this.constructor().fromArray(this.elements);
+ }
+
+ }
+
+ Matrix3.prototype.isMatrix3 = true;
+
+ function arrayMax(array) {
+ if (array.length === 0) return -Infinity;
+ let max = array[0];
+
+ for (let i = 1, l = array.length; i < l; ++i) {
+ if (array[i] > max) max = array[i];
+ }
+
+ return max;
+ }
+
+ const TYPED_ARRAYS = {
+ Int8Array: Int8Array,
+ Uint8Array: Uint8Array,
+ Uint8ClampedArray: Uint8ClampedArray,
+ Int16Array: Int16Array,
+ Uint16Array: Uint16Array,
+ Int32Array: Int32Array,
+ Uint32Array: Uint32Array,
+ Float32Array: Float32Array,
+ Float64Array: Float64Array
+ };
+
+ function getTypedArray(type, buffer) {
+ return new TYPED_ARRAYS[type](buffer);
+ }
+
+ function createElementNS(name) {
+ return document.createElementNS('http://www.w3.org/1999/xhtml', name);
+ }
+
+ let _canvas;
+
+ class ImageUtils {
+ static getDataURL(image) {
+ if (/^data:/i.test(image.src)) {
+ return image.src;
+ }
+
+ if (typeof HTMLCanvasElement == 'undefined') {
+ return image.src;
+ }
+
+ let canvas;
+
+ if (image instanceof HTMLCanvasElement) {
+ canvas = image;
+ } else {
+ if (_canvas === undefined) _canvas = createElementNS('canvas');
+ _canvas.width = image.width;
+ _canvas.height = image.height;
+
+ const context = _canvas.getContext('2d');
+
+ if (image instanceof ImageData) {
+ context.putImageData(image, 0, 0);
+ } else {
+ context.drawImage(image, 0, 0, image.width, image.height);
+ }
+
+ canvas = _canvas;
+ }
+
+ if (canvas.width > 2048 || canvas.height > 2048) {
+ console.warn('THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image);
+ return canvas.toDataURL('image/jpeg', 0.6);
+ } else {
+ return canvas.toDataURL('image/png');
+ }
+ }
+
+ }
+
+ let textureId = 0;
+
+ class Texture extends EventDispatcher {
+ constructor(image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = 1, encoding = LinearEncoding) {
+ super();
+ Object.defineProperty(this, 'id', {
+ value: textureId++
+ });
+ this.uuid = generateUUID();
+ this.name = '';
+ this.image = image;
+ this.mipmaps = [];
+ this.mapping = mapping;
+ this.wrapS = wrapS;
+ this.wrapT = wrapT;
+ this.magFilter = magFilter;
+ this.minFilter = minFilter;
+ this.anisotropy = anisotropy;
+ this.format = format;
+ this.internalFormat = null;
+ this.type = type;
+ this.offset = new Vector2(0, 0);
+ this.repeat = new Vector2(1, 1);
+ this.center = new Vector2(0, 0);
+ this.rotation = 0;
+ this.matrixAutoUpdate = true;
+ this.matrix = new Matrix3();
+ this.generateMipmaps = true;
+ this.premultiplyAlpha = false;
+ this.flipY = true;
+ this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
+ // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
+ //
+ // Also changing the encoding after already used by a Material will not automatically make the Material
+ // update. You need to explicitly call Material.needsUpdate to trigger it to recompile.
+
+ this.encoding = encoding;
+ this.userData = {};
+ this.version = 0;
+ this.onUpdate = null;
+ this.isRenderTargetTexture = false;
+ }
+
+ updateMatrix() {
+ this.matrix.setUvTransform(this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y);
+ }
+
+ clone() {
+ return new this.constructor().copy(this);
+ }
+
+ copy(source) {
+ this.name = source.name;
+ this.image = source.image;
+ this.mipmaps = source.mipmaps.slice(0);
+ this.mapping = source.mapping;
+ this.wrapS = source.wrapS;
+ this.wrapT = source.wrapT;
+ this.magFilter = source.magFilter;
+ this.minFilter = source.minFilter;
+ this.anisotropy = source.anisotropy;
+ this.format = source.format;
+ this.internalFormat = source.internalFormat;
+ this.type = source.type;
+ this.offset.copy(source.offset);
+ this.repeat.copy(source.repeat);
+ this.center.copy(source.center);
+ this.rotation = source.rotation;
+ this.matrixAutoUpdate = source.matrixAutoUpdate;
+ this.matrix.copy(source.matrix);
+ this.generateMipmaps = source.generateMipmaps;
+ this.premultiplyAlpha = source.premultiplyAlpha;
+ this.flipY = source.flipY;
+ this.unpackAlignment = source.unpackAlignment;
+ this.encoding = source.encoding;
+ this.userData = JSON.parse(JSON.stringify(source.userData));
+ return this;
+ }
+
+ toJSON(meta) {
+ const isRootObject = meta === undefined || typeof meta === 'string';
+
+ if (!isRootObject && meta.textures[this.uuid] !== undefined) {
+ return meta.textures[this.uuid];
+ }
+
+ const output = {
+ metadata: {
+ version: 4.5,
+ type: 'Texture',
+ generator: 'Texture.toJSON'
+ },
+ uuid: this.uuid,
+ name: this.name,
+ mapping: this.mapping,
+ repeat: [this.repeat.x, this.repeat.y],
+ offset: [this.offset.x, this.offset.y],
+ center: [this.center.x, this.center.y],
+ rotation: this.rotation,
+ wrap: [this.wrapS, this.wrapT],
+ format: this.format,
+ type: this.type,
+ encoding: this.encoding,
+ minFilter: this.minFilter,
+ magFilter: this.magFilter,
+ anisotropy: this.anisotropy,
+ flipY: this.flipY,
+ premultiplyAlpha: this.premultiplyAlpha,
+ unpackAlignment: this.unpackAlignment
+ };
+
+ if (this.image !== undefined) {
+ // TODO: Move to THREE.Image
+ const image = this.image;
+
+ if (image.uuid === undefined) {
+ image.uuid = generateUUID(); // UGH
+ }
+
+ if (!isRootObject && meta.images[image.uuid] === undefined) {
+ let url;
+
+ if (Array.isArray(image)) {
+ // process array of images e.g. CubeTexture
+ url = [];
+
+ for (let i = 0, l = image.length; i < l; i++) {
+ // check cube texture with data textures
+ if (image[i].isDataTexture) {
+ url.push(serializeImage(image[i].image));
+ } else {
+ url.push(serializeImage(image[i]));
+ }
+ }
+ } else {
+ // process single image
+ url = serializeImage(image);
+ }
+
+ meta.images[image.uuid] = {
+ uuid: image.uuid,
+ url: url
+ };
+ }
+
+ output.image = image.uuid;
+ }
+
+ if (JSON.stringify(this.userData) !== '{}') output.userData = this.userData;
+
+ if (!isRootObject) {
+ meta.textures[this.uuid] = output;
+ }
+
+ return output;
+ }
+
+ dispose() {
+ this.dispatchEvent({
+ type: 'dispose'
+ });
+ }
+
+ transformUv(uv) {
+ if (this.mapping !== UVMapping) return uv;
+ uv.applyMatrix3(this.matrix);
+
+ if (uv.x < 0 || uv.x > 1) {
+ switch (this.wrapS) {
+ case RepeatWrapping:
+ uv.x = uv.x - Math.floor(uv.x);
+ break;
+
+ case ClampToEdgeWrapping:
+ uv.x = uv.x < 0 ? 0 : 1;
+ break;
+
+ case MirroredRepeatWrapping:
+ if (Math.abs(Math.floor(uv.x) % 2) === 1) {
+ uv.x = Math.ceil(uv.x) - uv.x;
+ } else {
+ uv.x = uv.x - Math.floor(uv.x);
+ }
+
+ break;
+ }
+ }
+
+ if (uv.y < 0 || uv.y > 1) {
+ switch (this.wrapT) {
+ case RepeatWrapping:
+ uv.y = uv.y - Math.floor(uv.y);
+ break;
+
+ case ClampToEdgeWrapping:
+ uv.y = uv.y < 0 ? 0 : 1;
+ break;
+
+ case MirroredRepeatWrapping:
+ if (Math.abs(Math.floor(uv.y) % 2) === 1) {
+ uv.y = Math.ceil(uv.y) - uv.y;
+ } else {
+ uv.y = uv.y - Math.floor(uv.y);
+ }
+
+ break;
+ }
+ }
+
+ if (this.flipY) {
+ uv.y = 1 - uv.y;
+ }
+
+ return uv;
+ }
+
+ set needsUpdate(value) {
+ if (value === true) this.version++;
+ }
+
+ }
+
+ Texture.DEFAULT_IMAGE = undefined;
+ Texture.DEFAULT_MAPPING = UVMapping;
+ Texture.prototype.isTexture = true;
+
+ function serializeImage(image) {
+ if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) {
+ // default images
+ return ImageUtils.getDataURL(image);
+ } else {
+ if (image.data) {
+ // images of DataTexture
+ return {
+ data: Array.prototype.slice.call(image.data),
+ width: image.width,
+ height: image.height,
+ type: image.data.constructor.name
+ };
+ } else {
+ console.warn('THREE.Texture: Unable to serialize Texture.');
+ return {};
+ }
+ }
+ }
+
+ class Vector4 {
+ constructor(x = 0, y = 0, z = 0, w = 1) {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.w = w;
+ }
+
+ get width() {
+ return this.z;
+ }
+
+ set width(value) {
+ this.z = value;
+ }
+
+ get height() {
+ return this.w;
+ }
+
+ set height(value) {
+ this.w = value;
+ }
+
+ set(x, y, z, w) {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.w = w;
+ return this;
+ }
+
+ setScalar(scalar) {
+ this.x = scalar;
+ this.y = scalar;
+ this.z = scalar;
+ this.w = scalar;
+ return this;
+ }
+
+ setX(x) {
+ this.x = x;
+ return this;
+ }
+
+ setY(y) {
+ this.y = y;
+ return this;
+ }
+
+ setZ(z) {
+ this.z = z;
+ return this;
+ }
+
+ setW(w) {
+ this.w = w;
+ return this;
+ }
+
+ setComponent(index, value) {
+ switch (index) {
+ case 0:
+ this.x = value;
+ break;
+
+ case 1:
+ this.y = value;
+ break;
+
+ case 2:
+ this.z = value;
+ break;
+
+ case 3:
+ this.w = value;
+ break;
+
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
+
+ return this;
+ }
+
+ getComponent(index) {
+ switch (index) {
+ case 0:
+ return this.x;
+
+ case 1:
+ return this.y;
+
+ case 2:
+ return this.z;
+
+ case 3:
+ return this.w;
+
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
+ }
+
+ clone() {
+ return new this.constructor(this.x, this.y, this.z, this.w);
+ }
+
+ copy(v) {
+ this.x = v.x;
+ this.y = v.y;
+ this.z = v.z;
+ this.w = v.w !== undefined ? v.w : 1;
+ return this;
+ }
+
+ add(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
+ return this.addVectors(v, w);
+ }
+
+ this.x += v.x;
+ this.y += v.y;
+ this.z += v.z;
+ this.w += v.w;
+ return this;
+ }
+
+ addScalar(s) {
+ this.x += s;
+ this.y += s;
+ this.z += s;
+ this.w += s;
+ return this;
+ }
+
+ addVectors(a, b) {
+ this.x = a.x + b.x;
+ this.y = a.y + b.y;
+ this.z = a.z + b.z;
+ this.w = a.w + b.w;
+ return this;
+ }
+
+ addScaledVector(v, s) {
+ this.x += v.x * s;
+ this.y += v.y * s;
+ this.z += v.z * s;
+ this.w += v.w * s;
+ return this;
+ }
+
+ sub(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
+ return this.subVectors(v, w);
+ }
+
+ this.x -= v.x;
+ this.y -= v.y;
+ this.z -= v.z;
+ this.w -= v.w;
+ return this;
+ }
+
+ subScalar(s) {
+ this.x -= s;
+ this.y -= s;
+ this.z -= s;
+ this.w -= s;
+ return this;
+ }
+
+ subVectors(a, b) {
+ this.x = a.x - b.x;
+ this.y = a.y - b.y;
+ this.z = a.z - b.z;
+ this.w = a.w - b.w;
+ return this;
+ }
+
+ multiply(v) {
+ this.x *= v.x;
+ this.y *= v.y;
+ this.z *= v.z;
+ this.w *= v.w;
+ return this;
+ }
+
+ multiplyScalar(scalar) {
+ this.x *= scalar;
+ this.y *= scalar;
+ this.z *= scalar;
+ this.w *= scalar;
+ return this;
+ }
+
+ applyMatrix4(m) {
+ const x = this.x,
+ y = this.y,
+ z = this.z,
+ w = this.w;
+ const e = m.elements;
+ this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w;
+ this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w;
+ this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w;
+ this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w;
+ return this;
+ }
+
+ divideScalar(scalar) {
+ return this.multiplyScalar(1 / scalar);
+ }
+
+ setAxisAngleFromQuaternion(q) {
+ // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
+ // q is assumed to be normalized
+ this.w = 2 * Math.acos(q.w);
+ const s = Math.sqrt(1 - q.w * q.w);
+
+ if (s < 0.0001) {
+ this.x = 1;
+ this.y = 0;
+ this.z = 0;
+ } else {
+ this.x = q.x / s;
+ this.y = q.y / s;
+ this.z = q.z / s;
+ }
+
+ return this;
+ }
+
+ setAxisAngleFromRotationMatrix(m) {
+ // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
+ // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
+ let angle, x, y, z; // variables for result
+
+ const epsilon = 0.01,
+ // margin to allow for rounding errors
+ epsilon2 = 0.1,
+ // margin to distinguish between 0 and 180 degrees
+ te = m.elements,
+ m11 = te[0],
+ m12 = te[4],
+ m13 = te[8],
+ m21 = te[1],
+ m22 = te[5],
+ m23 = te[9],
+ m31 = te[2],
+ m32 = te[6],
+ m33 = te[10];
+
+ if (Math.abs(m12 - m21) < epsilon && Math.abs(m13 - m31) < epsilon && Math.abs(m23 - m32) < epsilon) {
+ // singularity found
+ // first check for identity matrix which must have +1 for all terms
+ // in leading diagonal and zero in other terms
+ if (Math.abs(m12 + m21) < epsilon2 && Math.abs(m13 + m31) < epsilon2 && Math.abs(m23 + m32) < epsilon2 && Math.abs(m11 + m22 + m33 - 3) < epsilon2) {
+ // this singularity is identity matrix so angle = 0
+ this.set(1, 0, 0, 0);
+ return this; // zero angle, arbitrary axis
+ } // otherwise this singularity is angle = 180
+
+
+ angle = Math.PI;
+ const xx = (m11 + 1) / 2;
+ const yy = (m22 + 1) / 2;
+ const zz = (m33 + 1) / 2;
+ const xy = (m12 + m21) / 4;
+ const xz = (m13 + m31) / 4;
+ const yz = (m23 + m32) / 4;
+
+ if (xx > yy && xx > zz) {
+ // m11 is the largest diagonal term
+ if (xx < epsilon) {
+ x = 0;
+ y = 0.707106781;
+ z = 0.707106781;
+ } else {
+ x = Math.sqrt(xx);
+ y = xy / x;
+ z = xz / x;
+ }
+ } else if (yy > zz) {
+ // m22 is the largest diagonal term
+ if (yy < epsilon) {
+ x = 0.707106781;
+ y = 0;
+ z = 0.707106781;
+ } else {
+ y = Math.sqrt(yy);
+ x = xy / y;
+ z = yz / y;
+ }
+ } else {
+ // m33 is the largest diagonal term so base result on this
+ if (zz < epsilon) {
+ x = 0.707106781;
+ y = 0.707106781;
+ z = 0;
+ } else {
+ z = Math.sqrt(zz);
+ x = xz / z;
+ y = yz / z;
+ }
+ }
+
+ this.set(x, y, z, angle);
+ return this; // return 180 deg rotation
+ } // as we have reached here there are no singularities so we can handle normally
+
+
+ let s = Math.sqrt((m32 - m23) * (m32 - m23) + (m13 - m31) * (m13 - m31) + (m21 - m12) * (m21 - m12)); // used to normalize
+
+ if (Math.abs(s) < 0.001) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be
+ // caught by singularity test above, but I've left it in just in case
+
+ this.x = (m32 - m23) / s;
+ this.y = (m13 - m31) / s;
+ this.z = (m21 - m12) / s;
+ this.w = Math.acos((m11 + m22 + m33 - 1) / 2);
+ return this;
+ }
+
+ min(v) {
+ this.x = Math.min(this.x, v.x);
+ this.y = Math.min(this.y, v.y);
+ this.z = Math.min(this.z, v.z);
+ this.w = Math.min(this.w, v.w);
+ return this;
+ }
+
+ max(v) {
+ this.x = Math.max(this.x, v.x);
+ this.y = Math.max(this.y, v.y);
+ this.z = Math.max(this.z, v.z);
+ this.w = Math.max(this.w, v.w);
+ return this;
+ }
+
+ clamp(min, max) {
+ // assumes min < max, componentwise
+ this.x = Math.max(min.x, Math.min(max.x, this.x));
+ this.y = Math.max(min.y, Math.min(max.y, this.y));
+ this.z = Math.max(min.z, Math.min(max.z, this.z));
+ this.w = Math.max(min.w, Math.min(max.w, this.w));
+ return this;
+ }
+
+ clampScalar(minVal, maxVal) {
+ this.x = Math.max(minVal, Math.min(maxVal, this.x));
+ this.y = Math.max(minVal, Math.min(maxVal, this.y));
+ this.z = Math.max(minVal, Math.min(maxVal, this.z));
+ this.w = Math.max(minVal, Math.min(maxVal, this.w));
+ return this;
+ }
+
+ clampLength(min, max) {
+ const length = this.length();
+ return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
+ }
+
+ floor() {
+ this.x = Math.floor(this.x);
+ this.y = Math.floor(this.y);
+ this.z = Math.floor(this.z);
+ this.w = Math.floor(this.w);
+ return this;
+ }
+
+ ceil() {
+ this.x = Math.ceil(this.x);
+ this.y = Math.ceil(this.y);
+ this.z = Math.ceil(this.z);
+ this.w = Math.ceil(this.w);
+ return this;
+ }
+
+ round() {
+ this.x = Math.round(this.x);
+ this.y = Math.round(this.y);
+ this.z = Math.round(this.z);
+ this.w = Math.round(this.w);
+ return this;
+ }
+
+ roundToZero() {
+ this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
+ this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
+ this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z);
+ this.w = this.w < 0 ? Math.ceil(this.w) : Math.floor(this.w);
+ return this;
+ }
+
+ negate() {
+ this.x = -this.x;
+ this.y = -this.y;
+ this.z = -this.z;
+ this.w = -this.w;
+ return this;
+ }
+
+ dot(v) {
+ return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
+ }
+
+ lengthSq() {
+ return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
+ }
+
+ length() {
+ return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w);
+ }
+
+ manhattanLength() {
+ return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) + Math.abs(this.w);
+ }
+
+ normalize() {
+ return this.divideScalar(this.length() || 1);
+ }
+
+ setLength(length) {
+ return this.normalize().multiplyScalar(length);
+ }
+
+ lerp(v, alpha) {
+ this.x += (v.x - this.x) * alpha;
+ this.y += (v.y - this.y) * alpha;
+ this.z += (v.z - this.z) * alpha;
+ this.w += (v.w - this.w) * alpha;
+ return this;
+ }
+
+ lerpVectors(v1, v2, alpha) {
+ this.x = v1.x + (v2.x - v1.x) * alpha;
+ this.y = v1.y + (v2.y - v1.y) * alpha;
+ this.z = v1.z + (v2.z - v1.z) * alpha;
+ this.w = v1.w + (v2.w - v1.w) * alpha;
+ return this;
+ }
+
+ equals(v) {
+ return v.x === this.x && v.y === this.y && v.z === this.z && v.w === this.w;
+ }
+
+ fromArray(array, offset = 0) {
+ this.x = array[offset];
+ this.y = array[offset + 1];
+ this.z = array[offset + 2];
+ this.w = array[offset + 3];
+ return this;
+ }
+
+ toArray(array = [], offset = 0) {
+ array[offset] = this.x;
+ array[offset + 1] = this.y;
+ array[offset + 2] = this.z;
+ array[offset + 3] = this.w;
+ return array;
+ }
+
+ fromBufferAttribute(attribute, index, offset) {
+ if (offset !== undefined) {
+ console.warn('THREE.Vector4: offset has been removed from .fromBufferAttribute().');
+ }
+
+ this.x = attribute.getX(index);
+ this.y = attribute.getY(index);
+ this.z = attribute.getZ(index);
+ this.w = attribute.getW(index);
+ return this;
+ }
+
+ random() {
+ this.x = Math.random();
+ this.y = Math.random();
+ this.z = Math.random();
+ this.w = Math.random();
+ return this;
+ }
+
+ *[Symbol.iterator]() {
+ yield this.x;
+ yield this.y;
+ yield this.z;
+ yield this.w;
+ }
+
+ }
+
+ Vector4.prototype.isVector4 = true;
+
+ /*
+ In options, we can specify:
+ * Texture parameters for an auto-generated target texture
+ * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
+ */
+
+ class WebGLRenderTarget extends EventDispatcher {
+ constructor(width, height, options = {}) {
+ super();
+ this.width = width;
+ this.height = height;
+ this.depth = 1;
+ this.scissor = new Vector4(0, 0, width, height);
+ this.scissorTest = false;
+ this.viewport = new Vector4(0, 0, width, height);
+ this.texture = new Texture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding);
+ this.texture.isRenderTargetTexture = true;
+ this.texture.image = {
+ width: width,
+ height: height,
+ depth: 1
+ };
+ this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
+ this.texture.internalFormat = options.internalFormat !== undefined ? options.internalFormat : null;
+ this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
+ this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
+ this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false;
+ this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;
+ }
+
+ setTexture(texture) {
+ texture.image = {
+ width: this.width,
+ height: this.height,
+ depth: this.depth
+ };
+ this.texture = texture;
+ }
+
+ setSize(width, height, depth = 1) {
+ if (this.width !== width || this.height !== height || this.depth !== depth) {
+ this.width = width;
+ this.height = height;
+ this.depth = depth;
+ this.texture.image.width = width;
+ this.texture.image.height = height;
+ this.texture.image.depth = depth;
+ this.dispose();
+ }
+
+ this.viewport.set(0, 0, width, height);
+ this.scissor.set(0, 0, width, height);
+ }
+
+ clone() {
+ return new this.constructor().copy(this);
+ }
+
+ copy(source) {
+ this.width = source.width;
+ this.height = source.height;
+ this.depth = source.depth;
+ this.viewport.copy(source.viewport);
+ this.texture = source.texture.clone();
+ this.texture.image = { ...this.texture.image
+ }; // See #20328.
+
+ this.depthBuffer = source.depthBuffer;
+ this.stencilBuffer = source.stencilBuffer;
+ this.depthTexture = source.depthTexture;
+ return this;
+ }
+
+ dispose() {
+ this.dispatchEvent({
+ type: 'dispose'
+ });
+ }
+
+ }
+
+ WebGLRenderTarget.prototype.isWebGLRenderTarget = true;
+
+ class WebGLMultipleRenderTargets extends WebGLRenderTarget {
+ constructor(width, height, count) {
+ super(width, height);
+ const texture = this.texture;
+ this.texture = [];
+
+ for (let i = 0; i < count; i++) {
+ this.texture[i] = texture.clone();
+ }
+ }
+
+ setSize(width, height, depth = 1) {
+ if (this.width !== width || this.height !== height || this.depth !== depth) {
+ this.width = width;
+ this.height = height;
+ this.depth = depth;
+
+ for (let i = 0, il = this.texture.length; i < il; i++) {
+ this.texture[i].image.width = width;
+ this.texture[i].image.height = height;
+ this.texture[i].image.depth = depth;
+ }
+
+ this.dispose();
+ }
+
+ this.viewport.set(0, 0, width, height);
+ this.scissor.set(0, 0, width, height);
+ return this;
+ }
+
+ copy(source) {
+ this.dispose();
+ this.width = source.width;
+ this.height = source.height;
+ this.depth = source.depth;
+ this.viewport.set(0, 0, this.width, this.height);
+ this.scissor.set(0, 0, this.width, this.height);
+ this.depthBuffer = source.depthBuffer;
+ this.stencilBuffer = source.stencilBuffer;
+ this.depthTexture = source.depthTexture;
+ this.texture.length = 0;
+
+ for (let i = 0, il = source.texture.length; i < il; i++) {
+ this.texture[i] = source.texture[i].clone();
+ }
+
+ return this;
+ }
+
+ }
+
+ WebGLMultipleRenderTargets.prototype.isWebGLMultipleRenderTargets = true;
+
+ class WebGLMultisampleRenderTarget extends WebGLRenderTarget {
+ constructor(width, height, options = {}) {
+ super(width, height, options);
+ this.samples = 4;
+ this.ignoreDepthForMultisampleCopy = options.ignoreDepth !== undefined ? options.ignoreDepth : true;
+ this.useRenderToTexture = options.useRenderToTexture !== undefined ? options.useRenderToTexture : false;
+ this.useRenderbuffer = this.useRenderToTexture === false;
+ }
+
+ copy(source) {
+ super.copy.call(this, source);
+ this.samples = source.samples;
+ this.useRenderToTexture = source.useRenderToTexture;
+ this.useRenderbuffer = source.useRenderbuffer;
+ return this;
+ }
+
+ }
+
+ WebGLMultisampleRenderTarget.prototype.isWebGLMultisampleRenderTarget = true;
+
+ class Quaternion {
+ constructor(x = 0, y = 0, z = 0, w = 1) {
+ this._x = x;
+ this._y = y;
+ this._z = z;
+ this._w = w;
+ }
+
+ static slerp(qa, qb, qm, t) {
+ console.warn('THREE.Quaternion: Static .slerp() has been deprecated. Use qm.slerpQuaternions( qa, qb, t ) instead.');
+ return qm.slerpQuaternions(qa, qb, t);
+ }
+
+ static slerpFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) {
+ // fuzz-free, array-based Quaternion SLERP operation
+ let x0 = src0[srcOffset0 + 0],
+ y0 = src0[srcOffset0 + 1],
+ z0 = src0[srcOffset0 + 2],
+ w0 = src0[srcOffset0 + 3];
+ const x1 = src1[srcOffset1 + 0],
+ y1 = src1[srcOffset1 + 1],
+ z1 = src1[srcOffset1 + 2],
+ w1 = src1[srcOffset1 + 3];
+
+ if (t === 0) {
+ dst[dstOffset + 0] = x0;
+ dst[dstOffset + 1] = y0;
+ dst[dstOffset + 2] = z0;
+ dst[dstOffset + 3] = w0;
+ return;
+ }
+
+ if (t === 1) {
+ dst[dstOffset + 0] = x1;
+ dst[dstOffset + 1] = y1;
+ dst[dstOffset + 2] = z1;
+ dst[dstOffset + 3] = w1;
+ return;
+ }
+
+ if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) {
+ let s = 1 - t;
+ const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
+ dir = cos >= 0 ? 1 : -1,
+ sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems:
+
+ if (sqrSin > Number.EPSILON) {
+ const sin = Math.sqrt(sqrSin),
+ len = Math.atan2(sin, cos * dir);
+ s = Math.sin(s * len) / sin;
+ t = Math.sin(t * len) / sin;
+ }
+
+ const tDir = t * dir;
+ x0 = x0 * s + x1 * tDir;
+ y0 = y0 * s + y1 * tDir;
+ z0 = z0 * s + z1 * tDir;
+ w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp:
+
+ if (s === 1 - t) {
+ const f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0);
+ x0 *= f;
+ y0 *= f;
+ z0 *= f;
+ w0 *= f;
+ }
+ }
+
+ dst[dstOffset] = x0;
+ dst[dstOffset + 1] = y0;
+ dst[dstOffset + 2] = z0;
+ dst[dstOffset + 3] = w0;
+ }
+
+ static multiplyQuaternionsFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1) {
+ const x0 = src0[srcOffset0];
+ const y0 = src0[srcOffset0 + 1];
+ const z0 = src0[srcOffset0 + 2];
+ const w0 = src0[srcOffset0 + 3];
+ const x1 = src1[srcOffset1];
+ const y1 = src1[srcOffset1 + 1];
+ const z1 = src1[srcOffset1 + 2];
+ const w1 = src1[srcOffset1 + 3];
+ dst[dstOffset] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
+ dst[dstOffset + 1] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
+ dst[dstOffset + 2] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
+ dst[dstOffset + 3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;
+ return dst;
+ }
+
+ get x() {
+ return this._x;
+ }
+
+ set x(value) {
+ this._x = value;
+
+ this._onChangeCallback();
+ }
+
+ get y() {
+ return this._y;
+ }
+
+ set y(value) {
+ this._y = value;
+
+ this._onChangeCallback();
+ }
+
+ get z() {
+ return this._z;
+ }
+
+ set z(value) {
+ this._z = value;
+
+ this._onChangeCallback();
+ }
+
+ get w() {
+ return this._w;
+ }
+
+ set w(value) {
+ this._w = value;
+
+ this._onChangeCallback();
+ }
+
+ set(x, y, z, w) {
+ this._x = x;
+ this._y = y;
+ this._z = z;
+ this._w = w;
+
+ this._onChangeCallback();
+
+ return this;
+ }
+
+ clone() {
+ return new this.constructor(this._x, this._y, this._z, this._w);
+ }
+
+ copy(quaternion) {
+ this._x = quaternion.x;
+ this._y = quaternion.y;
+ this._z = quaternion.z;
+ this._w = quaternion.w;
+
+ this._onChangeCallback();
+
+ return this;
+ }
+
+ setFromEuler(euler, update) {
+ if (!(euler && euler.isEuler)) {
+ throw new Error('THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.');
+ }
+
+ const x = euler._x,
+ y = euler._y,
+ z = euler._z,
+ order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/
+ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
+ // content/SpinCalc.m
+
+ const cos = Math.cos;
+ const sin = Math.sin;
+ const c1 = cos(x / 2);
+ const c2 = cos(y / 2);
+ const c3 = cos(z / 2);
+ const s1 = sin(x / 2);
+ const s2 = sin(y / 2);
+ const s3 = sin(z / 2);
+
+ switch (order) {
+ case 'XYZ':
+ this._x = s1 * c2 * c3 + c1 * s2 * s3;
+ this._y = c1 * s2 * c3 - s1 * c2 * s3;
+ this._z = c1 * c2 * s3 + s1 * s2 * c3;
+ this._w = c1 * c2 * c3 - s1 * s2 * s3;
+ break;
+
+ case 'YXZ':
+ this._x = s1 * c2 * c3 + c1 * s2 * s3;
+ this._y = c1 * s2 * c3 - s1 * c2 * s3;
+ this._z = c1 * c2 * s3 - s1 * s2 * c3;
+ this._w = c1 * c2 * c3 + s1 * s2 * s3;
+ break;
+
+ case 'ZXY':
+ this._x = s1 * c2 * c3 - c1 * s2 * s3;
+ this._y = c1 * s2 * c3 + s1 * c2 * s3;
+ this._z = c1 * c2 * s3 + s1 * s2 * c3;
+ this._w = c1 * c2 * c3 - s1 * s2 * s3;
+ break;
+
+ case 'ZYX':
+ this._x = s1 * c2 * c3 - c1 * s2 * s3;
+ this._y = c1 * s2 * c3 + s1 * c2 * s3;
+ this._z = c1 * c2 * s3 - s1 * s2 * c3;
+ this._w = c1 * c2 * c3 + s1 * s2 * s3;
+ break;
+
+ case 'YZX':
+ this._x = s1 * c2 * c3 + c1 * s2 * s3;
+ this._y = c1 * s2 * c3 + s1 * c2 * s3;
+ this._z = c1 * c2 * s3 - s1 * s2 * c3;
+ this._w = c1 * c2 * c3 - s1 * s2 * s3;
+ break;
+
+ case 'XZY':
+ this._x = s1 * c2 * c3 - c1 * s2 * s3;
+ this._y = c1 * s2 * c3 - s1 * c2 * s3;
+ this._z = c1 * c2 * s3 + s1 * s2 * c3;
+ this._w = c1 * c2 * c3 + s1 * s2 * s3;
+ break;
+
+ default:
+ console.warn('THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order);
+ }
+
+ if (update !== false) this._onChangeCallback();
+ return this;
+ }
+
+ setFromAxisAngle(axis, angle) {
+ // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
+ // assumes axis is normalized
+ const halfAngle = angle / 2,
+ s = Math.sin(halfAngle);
+ this._x = axis.x * s;
+ this._y = axis.y * s;
+ this._z = axis.z * s;
+ this._w = Math.cos(halfAngle);
+
+ this._onChangeCallback();
+
+ return this;
+ }
+
+ setFromRotationMatrix(m) {
+ // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
+ // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
+ const te = m.elements,
+ m11 = te[0],
+ m12 = te[4],
+ m13 = te[8],
+ m21 = te[1],
+ m22 = te[5],
+ m23 = te[9],
+ m31 = te[2],
+ m32 = te[6],
+ m33 = te[10],
+ trace = m11 + m22 + m33;
+
+ if (trace > 0) {
+ const s = 0.5 / Math.sqrt(trace + 1.0);
+ this._w = 0.25 / s;
+ this._x = (m32 - m23) * s;
+ this._y = (m13 - m31) * s;
+ this._z = (m21 - m12) * s;
+ } else if (m11 > m22 && m11 > m33) {
+ const s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33);
+ this._w = (m32 - m23) / s;
+ this._x = 0.25 * s;
+ this._y = (m12 + m21) / s;
+ this._z = (m13 + m31) / s;
+ } else if (m22 > m33) {
+ const s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33);
+ this._w = (m13 - m31) / s;
+ this._x = (m12 + m21) / s;
+ this._y = 0.25 * s;
+ this._z = (m23 + m32) / s;
+ } else {
+ const s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22);
+ this._w = (m21 - m12) / s;
+ this._x = (m13 + m31) / s;
+ this._y = (m23 + m32) / s;
+ this._z = 0.25 * s;
+ }
+
+ this._onChangeCallback();
+
+ return this;
+ }
+
+ setFromUnitVectors(vFrom, vTo) {
+ // assumes direction vectors vFrom and vTo are normalized
+ let r = vFrom.dot(vTo) + 1;
+
+ if (r < Number.EPSILON) {
+ // vFrom and vTo point in opposite directions
+ r = 0;
+
+ if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) {
+ this._x = -vFrom.y;
+ this._y = vFrom.x;
+ this._z = 0;
+ this._w = r;
+ } else {
+ this._x = 0;
+ this._y = -vFrom.z;
+ this._z = vFrom.y;
+ this._w = r;
+ }
+ } else {
+ // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
+ this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
+ this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
+ this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
+ this._w = r;
+ }
+
+ return this.normalize();
+ }
+
+ angleTo(q) {
+ return 2 * Math.acos(Math.abs(clamp(this.dot(q), -1, 1)));
+ }
+
+ rotateTowards(q, step) {
+ const angle = this.angleTo(q);
+ if (angle === 0) return this;
+ const t = Math.min(1, step / angle);
+ this.slerp(q, t);
+ return this;
+ }
+
+ identity() {
+ return this.set(0, 0, 0, 1);
+ }
+
+ invert() {
+ // quaternion is assumed to have unit length
+ return this.conjugate();
+ }
+
+ conjugate() {
+ this._x *= -1;
+ this._y *= -1;
+ this._z *= -1;
+
+ this._onChangeCallback();
+
+ return this;
+ }
+
+ dot(v) {
+ return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
+ }
+
+ lengthSq() {
+ return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
+ }
+
+ length() {
+ return Math.sqrt(this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w);
+ }
+
+ normalize() {
+ let l = this.length();
+
+ if (l === 0) {
+ this._x = 0;
+ this._y = 0;
+ this._z = 0;
+ this._w = 1;
+ } else {
+ l = 1 / l;
+ this._x = this._x * l;
+ this._y = this._y * l;
+ this._z = this._z * l;
+ this._w = this._w * l;
+ }
+
+ this._onChangeCallback();
+
+ return this;
+ }
+
+ multiply(q, p) {
+ if (p !== undefined) {
+ console.warn('THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.');
+ return this.multiplyQuaternions(q, p);
+ }
+
+ return this.multiplyQuaternions(this, q);
+ }
+
+ premultiply(q) {
+ return this.multiplyQuaternions(q, this);
+ }
+
+ multiplyQuaternions(a, b) {
+ // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
+ const qax = a._x,
+ qay = a._y,
+ qaz = a._z,
+ qaw = a._w;
+ const qbx = b._x,
+ qby = b._y,
+ qbz = b._z,
+ qbw = b._w;
+ this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
+ this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
+ this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
+ this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
+
+ this._onChangeCallback();
+
+ return this;
+ }
+
+ slerp(qb, t) {
+ if (t === 0) return this;
+ if (t === 1) return this.copy(qb);
+ const x = this._x,
+ y = this._y,
+ z = this._z,
+ w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
+
+ let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
+
+ if (cosHalfTheta < 0) {
+ this._w = -qb._w;
+ this._x = -qb._x;
+ this._y = -qb._y;
+ this._z = -qb._z;
+ cosHalfTheta = -cosHalfTheta;
+ } else {
+ this.copy(qb);
+ }
+
+ if (cosHalfTheta >= 1.0) {
+ this._w = w;
+ this._x = x;
+ this._y = y;
+ this._z = z;
+ return this;
+ }
+
+ const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;
+
+ if (sqrSinHalfTheta <= Number.EPSILON) {
+ const s = 1 - t;
+ this._w = s * w + t * this._w;
+ this._x = s * x + t * this._x;
+ this._y = s * y + t * this._y;
+ this._z = s * z + t * this._z;
+ this.normalize();
+
+ this._onChangeCallback();
+
+ return this;
+ }
+
+ const sinHalfTheta = Math.sqrt(sqrSinHalfTheta);
+ const halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta);
+ const ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta,
+ ratioB = Math.sin(t * halfTheta) / sinHalfTheta;
+ this._w = w * ratioA + this._w * ratioB;
+ this._x = x * ratioA + this._x * ratioB;
+ this._y = y * ratioA + this._y * ratioB;
+ this._z = z * ratioA + this._z * ratioB;
+
+ this._onChangeCallback();
+
+ return this;
+ }
+
+ slerpQuaternions(qa, qb, t) {
+ this.copy(qa).slerp(qb, t);
+ }
+
+ random() {
+ // Derived from http://planning.cs.uiuc.edu/node198.html
+ // Note, this source uses w, x, y, z ordering,
+ // so we swap the order below.
+ const u1 = Math.random();
+ const sqrt1u1 = Math.sqrt(1 - u1);
+ const sqrtu1 = Math.sqrt(u1);
+ const u2 = 2 * Math.PI * Math.random();
+ const u3 = 2 * Math.PI * Math.random();
+ return this.set(sqrt1u1 * Math.cos(u2), sqrtu1 * Math.sin(u3), sqrtu1 * Math.cos(u3), sqrt1u1 * Math.sin(u2));
+ }
+
+ equals(quaternion) {
+ return quaternion._x === this._x && quaternion._y === this._y && quaternion._z === this._z && quaternion._w === this._w;
+ }
+
+ fromArray(array, offset = 0) {
+ this._x = array[offset];
+ this._y = array[offset + 1];
+ this._z = array[offset + 2];
+ this._w = array[offset + 3];
+
+ this._onChangeCallback();
+
+ return this;
+ }
+
+ toArray(array = [], offset = 0) {
+ array[offset] = this._x;
+ array[offset + 1] = this._y;
+ array[offset + 2] = this._z;
+ array[offset + 3] = this._w;
+ return array;
+ }
+
+ fromBufferAttribute(attribute, index) {
+ this._x = attribute.getX(index);
+ this._y = attribute.getY(index);
+ this._z = attribute.getZ(index);
+ this._w = attribute.getW(index);
+ return this;
+ }
+
+ _onChange(callback) {
+ this._onChangeCallback = callback;
+ return this;
+ }
+
+ _onChangeCallback() {}
+
+ }
+
+ Quaternion.prototype.isQuaternion = true;
+
+ class Vector3 {
+ constructor(x = 0, y = 0, z = 0) {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ }
+
+ set(x, y, z) {
+ if (z === undefined) z = this.z; // sprite.scale.set(x,y)
+
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ return this;
+ }
+
+ setScalar(scalar) {
+ this.x = scalar;
+ this.y = scalar;
+ this.z = scalar;
+ return this;
+ }
+
+ setX(x) {
+ this.x = x;
+ return this;
+ }
+
+ setY(y) {
+ this.y = y;
+ return this;
+ }
+
+ setZ(z) {
+ this.z = z;
+ return this;
+ }
+
+ setComponent(index, value) {
+ switch (index) {
+ case 0:
+ this.x = value;
+ break;
+
+ case 1:
+ this.y = value;
+ break;
+
+ case 2:
+ this.z = value;
+ break;
+
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
+
+ return this;
+ }
+
+ getComponent(index) {
+ switch (index) {
+ case 0:
+ return this.x;
+
+ case 1:
+ return this.y;
+
+ case 2:
+ return this.z;
+
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
+ }
+
+ clone() {
+ return new this.constructor(this.x, this.y, this.z);
+ }
+
+ copy(v) {
+ this.x = v.x;
+ this.y = v.y;
+ this.z = v.z;
+ return this;
+ }
+
+ add(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
+ return this.addVectors(v, w);
+ }
+
+ this.x += v.x;
+ this.y += v.y;
+ this.z += v.z;
+ return this;
+ }
+
+ addScalar(s) {
+ this.x += s;
+ this.y += s;
+ this.z += s;
+ return this;
+ }
+
+ addVectors(a, b) {
+ this.x = a.x + b.x;
+ this.y = a.y + b.y;
+ this.z = a.z + b.z;
+ return this;
+ }
+
+ addScaledVector(v, s) {
+ this.x += v.x * s;
+ this.y += v.y * s;
+ this.z += v.z * s;
+ return this;
+ }
+
+ sub(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
+ return this.subVectors(v, w);
+ }
+
+ this.x -= v.x;
+ this.y -= v.y;
+ this.z -= v.z;
+ return this;
+ }
+
+ subScalar(s) {
+ this.x -= s;
+ this.y -= s;
+ this.z -= s;
+ return this;
+ }
+
+ subVectors(a, b) {
+ this.x = a.x - b.x;
+ this.y = a.y - b.y;
+ this.z = a.z - b.z;
+ return this;
+ }
+
+ multiply(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.');
+ return this.multiplyVectors(v, w);
+ }
+
+ this.x *= v.x;
+ this.y *= v.y;
+ this.z *= v.z;
+ return this;
+ }
+
+ multiplyScalar(scalar) {
+ this.x *= scalar;
+ this.y *= scalar;
+ this.z *= scalar;
+ return this;
+ }
+
+ multiplyVectors(a, b) {
+ this.x = a.x * b.x;
+ this.y = a.y * b.y;
+ this.z = a.z * b.z;
+ return this;
+ }
+
+ applyEuler(euler) {
+ if (!(euler && euler.isEuler)) {
+ console.error('THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.');
+ }
+
+ return this.applyQuaternion(_quaternion$4.setFromEuler(euler));
+ }
+
+ applyAxisAngle(axis, angle) {
+ return this.applyQuaternion(_quaternion$4.setFromAxisAngle(axis, angle));
+ }
+
+ applyMatrix3(m) {
+ const x = this.x,
+ y = this.y,
+ z = this.z;
+ const e = m.elements;
+ this.x = e[0] * x + e[3] * y + e[6] * z;
+ this.y = e[1] * x + e[4] * y + e[7] * z;
+ this.z = e[2] * x + e[5] * y + e[8] * z;
+ return this;
+ }
+
+ applyNormalMatrix(m) {
+ return this.applyMatrix3(m).normalize();
+ }
+
+ applyMatrix4(m) {
+ const x = this.x,
+ y = this.y,
+ z = this.z;
+ const e = m.elements;
+ const w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]);
+ this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w;
+ this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w;
+ this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w;
+ return this;
+ }
+
+ applyQuaternion(q) {
+ const x = this.x,
+ y = this.y,
+ z = this.z;
+ const qx = q.x,
+ qy = q.y,
+ qz = q.z,
+ qw = q.w; // calculate quat * vector
+
+ const ix = qw * x + qy * z - qz * y;
+ const iy = qw * y + qz * x - qx * z;
+ const iz = qw * z + qx * y - qy * x;
+ const iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat
+
+ this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
+ this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
+ this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
+ return this;
+ }
+
+ project(camera) {
+ return this.applyMatrix4(camera.matrixWorldInverse).applyMatrix4(camera.projectionMatrix);
+ }
+
+ unproject(camera) {
+ return this.applyMatrix4(camera.projectionMatrixInverse).applyMatrix4(camera.matrixWorld);
+ }
+
+ transformDirection(m) {
+ // input: THREE.Matrix4 affine matrix
+ // vector interpreted as a direction
+ const x = this.x,
+ y = this.y,
+ z = this.z;
+ const e = m.elements;
+ this.x = e[0] * x + e[4] * y + e[8] * z;
+ this.y = e[1] * x + e[5] * y + e[9] * z;
+ this.z = e[2] * x + e[6] * y + e[10] * z;
+ return this.normalize();
+ }
+
+ divide(v) {
+ this.x /= v.x;
+ this.y /= v.y;
+ this.z /= v.z;
+ return this;
+ }
+
+ divideScalar(scalar) {
+ return this.multiplyScalar(1 / scalar);
+ }
+
+ min(v) {
+ this.x = Math.min(this.x, v.x);
+ this.y = Math.min(this.y, v.y);
+ this.z = Math.min(this.z, v.z);
+ return this;
+ }
+
+ max(v) {
+ this.x = Math.max(this.x, v.x);
+ this.y = Math.max(this.y, v.y);
+ this.z = Math.max(this.z, v.z);
+ return this;
+ }
+
+ clamp(min, max) {
+ // assumes min < max, componentwise
+ this.x = Math.max(min.x, Math.min(max.x, this.x));
+ this.y = Math.max(min.y, Math.min(max.y, this.y));
+ this.z = Math.max(min.z, Math.min(max.z, this.z));
+ return this;
+ }
+
+ clampScalar(minVal, maxVal) {
+ this.x = Math.max(minVal, Math.min(maxVal, this.x));
+ this.y = Math.max(minVal, Math.min(maxVal, this.y));
+ this.z = Math.max(minVal, Math.min(maxVal, this.z));
+ return this;
+ }
+
+ clampLength(min, max) {
+ const length = this.length();
+ return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
+ }
+
+ floor() {
+ this.x = Math.floor(this.x);
+ this.y = Math.floor(this.y);
+ this.z = Math.floor(this.z);
+ return this;
+ }
+
+ ceil() {
+ this.x = Math.ceil(this.x);
+ this.y = Math.ceil(this.y);
+ this.z = Math.ceil(this.z);
+ return this;
+ }
+
+ round() {
+ this.x = Math.round(this.x);
+ this.y = Math.round(this.y);
+ this.z = Math.round(this.z);
+ return this;
+ }
+
+ roundToZero() {
+ this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
+ this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
+ this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z);
+ return this;
+ }
+
+ negate() {
+ this.x = -this.x;
+ this.y = -this.y;
+ this.z = -this.z;
+ return this;
+ }
+
+ dot(v) {
+ return this.x * v.x + this.y * v.y + this.z * v.z;
+ } // TODO lengthSquared?
+
+
+ lengthSq() {
+ return this.x * this.x + this.y * this.y + this.z * this.z;
+ }
+
+ length() {
+ return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
+ }
+
+ manhattanLength() {
+ return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z);
+ }
+
+ normalize() {
+ return this.divideScalar(this.length() || 1);
+ }
+
+ setLength(length) {
+ return this.normalize().multiplyScalar(length);
+ }
+
+ lerp(v, alpha) {
+ this.x += (v.x - this.x) * alpha;
+ this.y += (v.y - this.y) * alpha;
+ this.z += (v.z - this.z) * alpha;
+ return this;
+ }
+
+ lerpVectors(v1, v2, alpha) {
+ this.x = v1.x + (v2.x - v1.x) * alpha;
+ this.y = v1.y + (v2.y - v1.y) * alpha;
+ this.z = v1.z + (v2.z - v1.z) * alpha;
+ return this;
+ }
+
+ cross(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.');
+ return this.crossVectors(v, w);
+ }
+
+ return this.crossVectors(this, v);
+ }
+
+ crossVectors(a, b) {
+ const ax = a.x,
+ ay = a.y,
+ az = a.z;
+ const bx = b.x,
+ by = b.y,
+ bz = b.z;
+ this.x = ay * bz - az * by;
+ this.y = az * bx - ax * bz;
+ this.z = ax * by - ay * bx;
+ return this;
+ }
+
+ projectOnVector(v) {
+ const denominator = v.lengthSq();
+ if (denominator === 0) return this.set(0, 0, 0);
+ const scalar = v.dot(this) / denominator;
+ return this.copy(v).multiplyScalar(scalar);
+ }
+
+ projectOnPlane(planeNormal) {
+ _vector$c.copy(this).projectOnVector(planeNormal);
+
+ return this.sub(_vector$c);
+ }
+
+ reflect(normal) {
+ // reflect incident vector off plane orthogonal to normal
+ // normal is assumed to have unit length
+ return this.sub(_vector$c.copy(normal).multiplyScalar(2 * this.dot(normal)));
+ }
+
+ angleTo(v) {
+ const denominator = Math.sqrt(this.lengthSq() * v.lengthSq());
+ if (denominator === 0) return Math.PI / 2;
+ const theta = this.dot(v) / denominator; // clamp, to handle numerical problems
+
+ return Math.acos(clamp(theta, -1, 1));
+ }
+
+ distanceTo(v) {
+ return Math.sqrt(this.distanceToSquared(v));
+ }
+
+ distanceToSquared(v) {
+ const dx = this.x - v.x,
+ dy = this.y - v.y,
+ dz = this.z - v.z;
+ return dx * dx + dy * dy + dz * dz;
+ }
+
+ manhattanDistanceTo(v) {
+ return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z);
+ }
+
+ setFromSpherical(s) {
+ return this.setFromSphericalCoords(s.radius, s.phi, s.theta);
+ }
+
+ setFromSphericalCoords(radius, phi, theta) {
+ const sinPhiRadius = Math.sin(phi) * radius;
+ this.x = sinPhiRadius * Math.sin(theta);
+ this.y = Math.cos(phi) * radius;
+ this.z = sinPhiRadius * Math.cos(theta);
+ return this;
+ }
+
+ setFromCylindrical(c) {
+ return this.setFromCylindricalCoords(c.radius, c.theta, c.y);
+ }
+
+ setFromCylindricalCoords(radius, theta, y) {
+ this.x = radius * Math.sin(theta);
+ this.y = y;
+ this.z = radius * Math.cos(theta);
+ return this;
+ }
+
+ setFromMatrixPosition(m) {
+ const e = m.elements;
+ this.x = e[12];
+ this.y = e[13];
+ this.z = e[14];
+ return this;
+ }
+
+ setFromMatrixScale(m) {
+ const sx = this.setFromMatrixColumn(m, 0).length();
+ const sy = this.setFromMatrixColumn(m, 1).length();
+ const sz = this.setFromMatrixColumn(m, 2).length();
+ this.x = sx;
+ this.y = sy;
+ this.z = sz;
+ return this;
+ }
+
+ setFromMatrixColumn(m, index) {
+ return this.fromArray(m.elements, index * 4);
+ }
+
+ setFromMatrix3Column(m, index) {
+ return this.fromArray(m.elements, index * 3);
+ }
+
+ equals(v) {
+ return v.x === this.x && v.y === this.y && v.z === this.z;
+ }
+
+ fromArray(array, offset = 0) {
+ this.x = array[offset];
+ this.y = array[offset + 1];
+ this.z = array[offset + 2];
+ return this;
+ }
+
+ toArray(array = [], offset = 0) {
+ array[offset] = this.x;
+ array[offset + 1] = this.y;
+ array[offset + 2] = this.z;
+ return array;
+ }
+
+ fromBufferAttribute(attribute, index, offset) {
+ if (offset !== undefined) {
+ console.warn('THREE.Vector3: offset has been removed from .fromBufferAttribute().');
+ }
+
+ this.x = attribute.getX(index);
+ this.y = attribute.getY(index);
+ this.z = attribute.getZ(index);
+ return this;
+ }
+
+ random() {
+ this.x = Math.random();
+ this.y = Math.random();
+ this.z = Math.random();
+ return this;
+ }
+
+ randomDirection() {
+ // Derived from https://mathworld.wolfram.com/SpherePointPicking.html
+ const u = (Math.random() - 0.5) * 2;
+ const t = Math.random() * Math.PI * 2;
+ const f = Math.sqrt(1 - u ** 2);
+ this.x = f * Math.cos(t);
+ this.y = f * Math.sin(t);
+ this.z = u;
+ return this;
+ }
+
+ *[Symbol.iterator]() {
+ yield this.x;
+ yield this.y;
+ yield this.z;
+ }
+
+ }
+
+ Vector3.prototype.isVector3 = true;
+
+ const _vector$c = /*@__PURE__*/new Vector3();
+
+ const _quaternion$4 = /*@__PURE__*/new Quaternion();
+
+ class Box3 {
+ constructor(min = new Vector3(+Infinity, +Infinity, +Infinity), max = new Vector3(-Infinity, -Infinity, -Infinity)) {
+ this.min = min;
+ this.max = max;
+ }
+
+ set(min, max) {
+ this.min.copy(min);
+ this.max.copy(max);
+ return this;
+ }
+
+ setFromArray(array) {
+ let minX = +Infinity;
+ let minY = +Infinity;
+ let minZ = +Infinity;
+ let maxX = -Infinity;
+ let maxY = -Infinity;
+ let maxZ = -Infinity;
+
+ for (let i = 0, l = array.length; i < l; i += 3) {
+ const x = array[i];
+ const y = array[i + 1];
+ const z = array[i + 2];
+ if (x < minX) minX = x;
+ if (y < minY) minY = y;
+ if (z < minZ) minZ = z;
+ if (x > maxX) maxX = x;
+ if (y > maxY) maxY = y;
+ if (z > maxZ) maxZ = z;
+ }
+
+ this.min.set(minX, minY, minZ);
+ this.max.set(maxX, maxY, maxZ);
+ return this;
+ }
+
+ setFromBufferAttribute(attribute) {
+ let minX = +Infinity;
+ let minY = +Infinity;
+ let minZ = +Infinity;
+ let maxX = -Infinity;
+ let maxY = -Infinity;
+ let maxZ = -Infinity;
+
+ for (let i = 0, l = attribute.count; i < l; i++) {
+ const x = attribute.getX(i);
+ const y = attribute.getY(i);
+ const z = attribute.getZ(i);
+ if (x < minX) minX = x;
+ if (y < minY) minY = y;
+ if (z < minZ) minZ = z;
+ if (x > maxX) maxX = x;
+ if (y > maxY) maxY = y;
+ if (z > maxZ) maxZ = z;
+ }
+
+ this.min.set(minX, minY, minZ);
+ this.max.set(maxX, maxY, maxZ);
+ return this;
+ }
+
+ setFromPoints(points) {
+ this.makeEmpty();
+
+ for (let i = 0, il = points.length; i < il; i++) {
+ this.expandByPoint(points[i]);
+ }
+
+ return this;
+ }
+
+ setFromCenterAndSize(center, size) {
+ const halfSize = _vector$b.copy(size).multiplyScalar(0.5);
+
+ this.min.copy(center).sub(halfSize);
+ this.max.copy(center).add(halfSize);
+ return this;
+ }
+
+ setFromObject(object) {
+ this.makeEmpty();
+ return this.expandByObject(object);
+ }
+
+ clone() {
+ return new this.constructor().copy(this);
+ }
+
+ copy(box) {
+ this.min.copy(box.min);
+ this.max.copy(box.max);
+ return this;
+ }
+
+ makeEmpty() {
+ this.min.x = this.min.y = this.min.z = +Infinity;
+ this.max.x = this.max.y = this.max.z = -Infinity;
+ return this;
+ }
+
+ isEmpty() {
+ // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
+ return this.max.x < this.min.x || this.max.y < this.min.y || this.max.z < this.min.z;
+ }
+
+ getCenter(target) {
+ return this.isEmpty() ? target.set(0, 0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5);
+ }
+
+ getSize(target) {
+ return this.isEmpty() ? target.set(0, 0, 0) : target.subVectors(this.max, this.min);
+ }
+
+ expandByPoint(point) {
+ this.min.min(point);
+ this.max.max(point);
+ return this;
+ }
+
+ expandByVector(vector) {
+ this.min.sub(vector);
+ this.max.add(vector);
+ return this;
+ }
+
+ expandByScalar(scalar) {
+ this.min.addScalar(-scalar);
+ this.max.addScalar(scalar);
+ return this;
+ }
+
+ expandByObject(object) {
+ // Computes the world-axis-aligned bounding box of an object (including its children),
+ // accounting for both the object's, and children's, world transforms
+ object.updateWorldMatrix(false, false);
+ const geometry = object.geometry;
+
+ if (geometry !== undefined) {
+ if (geometry.boundingBox === null) {
+ geometry.computeBoundingBox();
+ }
+
+ _box$3.copy(geometry.boundingBox);
+
+ _box$3.applyMatrix4(object.matrixWorld);
+
+ this.union(_box$3);
+ }
+
+ const children = object.children;
+
+ for (let i = 0, l = children.length; i < l; i++) {
+ this.expandByObject(children[i]);
+ }
+
+ return this;
+ }
+
+ containsPoint(point) {
+ return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true;
+ }
+
+ containsBox(box) {
+ return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z;
+ }
+
+ getParameter(point, target) {
+ // This can potentially have a divide by zero if the box
+ // has a size dimension of 0.
+ return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y), (point.z - this.min.z) / (this.max.z - this.min.z));
+ }
+
+ intersectsBox(box) {
+ // using 6 splitting planes to rule out intersections.
+ return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true;
+ }
+
+ intersectsSphere(sphere) {
+ // Find the point on the AABB closest to the sphere center.
+ this.clampPoint(sphere.center, _vector$b); // If that point is inside the sphere, the AABB and sphere intersect.
+
+ return _vector$b.distanceToSquared(sphere.center) <= sphere.radius * sphere.radius;
+ }
+
+ intersectsPlane(plane) {
+ // We compute the minimum and maximum dot product values. If those values
+ // are on the same side (back or front) of the plane, then there is no intersection.
+ let min, max;
+
+ if (plane.normal.x > 0) {
+ min = plane.normal.x * this.min.x;
+ max = plane.normal.x * this.max.x;
+ } else {
+ min = plane.normal.x * this.max.x;
+ max = plane.normal.x * this.min.x;
+ }
+
+ if (plane.normal.y > 0) {
+ min += plane.normal.y * this.min.y;
+ max += plane.normal.y * this.max.y;
+ } else {
+ min += plane.normal.y * this.max.y;
+ max += plane.normal.y * this.min.y;
+ }
+
+ if (plane.normal.z > 0) {
+ min += plane.normal.z * this.min.z;
+ max += plane.normal.z * this.max.z;
+ } else {
+ min += plane.normal.z * this.max.z;
+ max += plane.normal.z * this.min.z;
+ }
+
+ return min <= -plane.constant && max >= -plane.constant;
+ }
+
+ intersectsTriangle(triangle) {
+ if (this.isEmpty()) {
+ return false;
+ } // compute box center and extents
+
+
+ this.getCenter(_center);
+
+ _extents.subVectors(this.max, _center); // translate triangle to aabb origin
+
+
+ _v0$2.subVectors(triangle.a, _center);
+
+ _v1$7.subVectors(triangle.b, _center);
+
+ _v2$3.subVectors(triangle.c, _center); // compute edge vectors for triangle
+
+
+ _f0.subVectors(_v1$7, _v0$2);
+
+ _f1.subVectors(_v2$3, _v1$7);
+
+ _f2.subVectors(_v0$2, _v2$3); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
+ // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
+ // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
+
+
+ let axes = [0, -_f0.z, _f0.y, 0, -_f1.z, _f1.y, 0, -_f2.z, _f2.y, _f0.z, 0, -_f0.x, _f1.z, 0, -_f1.x, _f2.z, 0, -_f2.x, -_f0.y, _f0.x, 0, -_f1.y, _f1.x, 0, -_f2.y, _f2.x, 0];
+
+ if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) {
+ return false;
+ } // test 3 face normals from the aabb
+
+
+ axes = [1, 0, 0, 0, 1, 0, 0, 0, 1];
+
+ if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) {
+ return false;
+ } // finally testing the face normal of the triangle
+ // use already existing triangle edge vectors here
+
+
+ _triangleNormal.crossVectors(_f0, _f1);
+
+ axes = [_triangleNormal.x, _triangleNormal.y, _triangleNormal.z];
+ return satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents);
+ }
+
+ clampPoint(point, target) {
+ return target.copy(point).clamp(this.min, this.max);
+ }
+
+ distanceToPoint(point) {
+ const clampedPoint = _vector$b.copy(point).clamp(this.min, this.max);
+
+ return clampedPoint.sub(point).length();
+ }
+
+ getBoundingSphere(target) {
+ this.getCenter(target.center);
+ target.radius = this.getSize(_vector$b).length() * 0.5;
+ return target;
+ }
+
+ intersect(box) {
+ this.min.max(box.min);
+ this.max.min(box.max); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
+
+ if (this.isEmpty()) this.makeEmpty();
+ return this;
+ }
+
+ union(box) {
+ this.min.min(box.min);
+ this.max.max(box.max);
+ return this;
+ }
+
+ applyMatrix4(matrix) {
+ // transform of empty box is an empty box.
+ if (this.isEmpty()) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below
+
+ _points[0].set(this.min.x, this.min.y, this.min.z).applyMatrix4(matrix); // 000
+
+
+ _points[1].set(this.min.x, this.min.y, this.max.z).applyMatrix4(matrix); // 001
+
+
+ _points[2].set(this.min.x, this.max.y, this.min.z).applyMatrix4(matrix); // 010
+
+
+ _points[3].set(this.min.x, this.max.y, this.max.z).applyMatrix4(matrix); // 011
+
+
+ _points[4].set(this.max.x, this.min.y, this.min.z).applyMatrix4(matrix); // 100
+
+
+ _points[5].set(this.max.x, this.min.y, this.max.z).applyMatrix4(matrix); // 101
+
+
+ _points[6].set(this.max.x, this.max.y, this.min.z).applyMatrix4(matrix); // 110
+
+
+ _points[7].set(this.max.x, this.max.y, this.max.z).applyMatrix4(matrix); // 111
+
+
+ this.setFromPoints(_points);
+ return this;
+ }
+
+ translate(offset) {
+ this.min.add(offset);
+ this.max.add(offset);
+ return this;
+ }
+
+ equals(box) {
+ return box.min.equals(this.min) && box.max.equals(this.max);
+ }
+
+ }
+
+ Box3.prototype.isBox3 = true;
+ const _points = [/*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3()];
+
+ const _vector$b = /*@__PURE__*/new Vector3();
+
+ const _box$3 = /*@__PURE__*/new Box3(); // triangle centered vertices
+
+
+ const _v0$2 = /*@__PURE__*/new Vector3();
+
+ const _v1$7 = /*@__PURE__*/new Vector3();
+
+ const _v2$3 = /*@__PURE__*/new Vector3(); // triangle edge vectors
+
+
+ const _f0 = /*@__PURE__*/new Vector3();
+
+ const _f1 = /*@__PURE__*/new Vector3();
+
+ const _f2 = /*@__PURE__*/new Vector3();
+
+ const _center = /*@__PURE__*/new Vector3();
+
+ const _extents = /*@__PURE__*/new Vector3();
+
+ const _triangleNormal = /*@__PURE__*/new Vector3();
+
+ const _testAxis = /*@__PURE__*/new Vector3();
+
+ function satForAxes(axes, v0, v1, v2, extents) {
+ for (let i = 0, j = axes.length - 3; i <= j; i += 3) {
+ _testAxis.fromArray(axes, i); // project the aabb onto the seperating axis
+
+
+ const r = extents.x * Math.abs(_testAxis.x) + extents.y * Math.abs(_testAxis.y) + extents.z * Math.abs(_testAxis.z); // project all 3 vertices of the triangle onto the seperating axis
+
+ const p0 = v0.dot(_testAxis);
+ const p1 = v1.dot(_testAxis);
+ const p2 = v2.dot(_testAxis); // actual test, basically see if either of the most extreme of the triangle points intersects r
+
+ if (Math.max(-Math.max(p0, p1, p2), Math.min(p0, p1, p2)) > r) {
+ // points of the projected triangle are outside the projected half-length of the aabb
+ // the axis is seperating and we can exit
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ const _box$2 = /*@__PURE__*/new Box3();
+
+ const _v1$6 = /*@__PURE__*/new Vector3();
+
+ const _toFarthestPoint = /*@__PURE__*/new Vector3();
+
+ const _toPoint = /*@__PURE__*/new Vector3();
+
+ class Sphere {
+ constructor(center = new Vector3(), radius = -1) {
+ this.center = center;
+ this.radius = radius;
+ }
+
+ set(center, radius) {
+ this.center.copy(center);
+ this.radius = radius;
+ return this;
+ }
+
+ setFromPoints(points, optionalCenter) {
+ const center = this.center;
+
+ if (optionalCenter !== undefined) {
+ center.copy(optionalCenter);
+ } else {
+ _box$2.setFromPoints(points).getCenter(center);
+ }
+
+ let maxRadiusSq = 0;
+
+ for (let i = 0, il = points.length; i < il; i++) {
+ maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(points[i]));
+ }
+
+ this.radius = Math.sqrt(maxRadiusSq);
+ return this;
+ }
+
+ copy(sphere) {
+ this.center.copy(sphere.center);
+ this.radius = sphere.radius;
+ return this;
+ }
+
+ isEmpty() {
+ return this.radius < 0;
+ }
+
+ makeEmpty() {
+ this.center.set(0, 0, 0);
+ this.radius = -1;
+ return this;
+ }
+
+ containsPoint(point) {
+ return point.distanceToSquared(this.center) <= this.radius * this.radius;
+ }
+
+ distanceToPoint(point) {
+ return point.distanceTo(this.center) - this.radius;
+ }
+
+ intersectsSphere(sphere) {
+ const radiusSum = this.radius + sphere.radius;
+ return sphere.center.distanceToSquared(this.center) <= radiusSum * radiusSum;
+ }
+
+ intersectsBox(box) {
+ return box.intersectsSphere(this);
+ }
+
+ intersectsPlane(plane) {
+ return Math.abs(plane.distanceToPoint(this.center)) <= this.radius;
+ }
+
+ clampPoint(point, target) {
+ const deltaLengthSq = this.center.distanceToSquared(point);
+ target.copy(point);
+
+ if (deltaLengthSq > this.radius * this.radius) {
+ target.sub(this.center).normalize();
+ target.multiplyScalar(this.radius).add(this.center);
+ }
+
+ return target;
+ }
+
+ getBoundingBox(target) {
+ if (this.isEmpty()) {
+ // Empty sphere produces empty bounding box
+ target.makeEmpty();
+ return target;
+ }
+
+ target.set(this.center, this.center);
+ target.expandByScalar(this.radius);
+ return target;
+ }
+
+ applyMatrix4(matrix) {
+ this.center.applyMatrix4(matrix);
+ this.radius = this.radius * matrix.getMaxScaleOnAxis();
+ return this;
+ }
+
+ translate(offset) {
+ this.center.add(offset);
+ return this;
+ }
+
+ expandByPoint(point) {
+ // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L649-L671
+ _toPoint.subVectors(point, this.center);
+
+ const lengthSq = _toPoint.lengthSq();
+
+ if (lengthSq > this.radius * this.radius) {
+ const length = Math.sqrt(lengthSq);
+ const missingRadiusHalf = (length - this.radius) * 0.5; // Nudge this sphere towards the target point. Add half the missing distance to radius,
+ // and the other half to position. This gives a tighter enclosure, instead of if
+ // the whole missing distance were just added to radius.
+
+ this.center.add(_toPoint.multiplyScalar(missingRadiusHalf / length));
+ this.radius += missingRadiusHalf;
+ }
+
+ return this;
+ }
+
+ union(sphere) {
+ // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L759-L769
+ // To enclose another sphere into this sphere, we only need to enclose two points:
+ // 1) Enclose the farthest point on the other sphere into this sphere.
+ // 2) Enclose the opposite point of the farthest point into this sphere.
+ if (this.center.equals(sphere.center) === true) {
+ _toFarthestPoint.set(0, 0, 1).multiplyScalar(sphere.radius);
+ } else {
+ _toFarthestPoint.subVectors(sphere.center, this.center).normalize().multiplyScalar(sphere.radius);
+ }
+
+ this.expandByPoint(_v1$6.copy(sphere.center).add(_toFarthestPoint));
+ this.expandByPoint(_v1$6.copy(sphere.center).sub(_toFarthestPoint));
+ return this;
+ }
+
+ equals(sphere) {
+ return sphere.center.equals(this.center) && sphere.radius === this.radius;
+ }
+
+ clone() {
+ return new this.constructor().copy(this);
+ }
+
+ }
+
+ const _vector$a = /*@__PURE__*/new Vector3();
+
+ const _segCenter = /*@__PURE__*/new Vector3();
+
+ const _segDir = /*@__PURE__*/new Vector3();
+
+ const _diff = /*@__PURE__*/new Vector3();
+
+ const _edge1 = /*@__PURE__*/new Vector3();
+
+ const _edge2 = /*@__PURE__*/new Vector3();
+
+ const _normal$1 = /*@__PURE__*/new Vector3();
+
+ class Ray {
+ constructor(origin = new Vector3(), direction = new Vector3(0, 0, -1)) {
+ this.origin = origin;
+ this.direction = direction;
+ }
+
+ set(origin, direction) {
+ this.origin.copy(origin);
+ this.direction.copy(direction);
+ return this;
+ }
+
+ copy(ray) {
+ this.origin.copy(ray.origin);
+ this.direction.copy(ray.direction);
+ return this;
+ }
+
+ at(t, target) {
+ return target.copy(this.direction).multiplyScalar(t).add(this.origin);
+ }
+
+ lookAt(v) {
+ this.direction.copy(v).sub(this.origin).normalize();
+ return this;
+ }
+
+ recast(t) {
+ this.origin.copy(this.at(t, _vector$a));
+ return this;
+ }
+
+ closestPointToPoint(point, target) {
+ target.subVectors(point, this.origin);
+ const directionDistance = target.dot(this.direction);
+
+ if (directionDistance < 0) {
+ return target.copy(this.origin);
+ }
+
+ return target.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);
+ }
+
+ distanceToPoint(point) {
+ return Math.sqrt(this.distanceSqToPoint(point));
+ }
+
+ distanceSqToPoint(point) {
+ const directionDistance = _vector$a.subVectors(point, this.origin).dot(this.direction); // point behind the ray
+
+
+ if (directionDistance < 0) {
+ return this.origin.distanceToSquared(point);
+ }
+
+ _vector$a.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);
+
+ return _vector$a.distanceToSquared(point);
+ }
+
+ distanceSqToSegment(v0, v1, optionalPointOnRay, optionalPointOnSegment) {
+ // from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteDistRaySegment.h
+ // It returns the min distance between the ray and the segment
+ // defined by v0 and v1
+ // It can also set two optional targets :
+ // - The closest point on the ray
+ // - The closest point on the segment
+ _segCenter.copy(v0).add(v1).multiplyScalar(0.5);
+
+ _segDir.copy(v1).sub(v0).normalize();
+
+ _diff.copy(this.origin).sub(_segCenter);
+
+ const segExtent = v0.distanceTo(v1) * 0.5;
+ const a01 = -this.direction.dot(_segDir);
+
+ const b0 = _diff.dot(this.direction);
+
+ const b1 = -_diff.dot(_segDir);
+
+ const c = _diff.lengthSq();
+
+ const det = Math.abs(1 - a01 * a01);
+ let s0, s1, sqrDist, extDet;
+
+ if (det > 0) {
+ // The ray and segment are not parallel.
+ s0 = a01 * b1 - b0;
+ s1 = a01 * b0 - b1;
+ extDet = segExtent * det;
+
+ if (s0 >= 0) {
+ if (s1 >= -extDet) {
+ if (s1 <= extDet) {
+ // region 0
+ // Minimum at interior points of ray and segment.
+ const invDet = 1 / det;
+ s0 *= invDet;
+ s1 *= invDet;
+ sqrDist = s0 * (s0 + a01 * s1 + 2 * b0) + s1 * (a01 * s0 + s1 + 2 * b1) + c;
+ } else {
+ // region 1
+ s1 = segExtent;
+ s0 = Math.max(0, -(a01 * s1 + b0));
+ sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
+ }
+ } else {
+ // region 5
+ s1 = -segExtent;
+ s0 = Math.max(0, -(a01 * s1 + b0));
+ sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
+ }
+ } else {
+ if (s1 <= -extDet) {
+ // region 4
+ s0 = Math.max(0, -(-a01 * segExtent + b0));
+ s1 = s0 > 0 ? -segExtent : Math.min(Math.max(-segExtent, -b1), segExtent);
+ sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
+ } else if (s1 <= extDet) {
+ // region 3
+ s0 = 0;
+ s1 = Math.min(Math.max(-segExtent, -b1), segExtent);
+ sqrDist = s1 * (s1 + 2 * b1) + c;
+ } else {
+ // region 2
+ s0 = Math.max(0, -(a01 * segExtent + b0));
+ s1 = s0 > 0 ? segExtent : Math.min(Math.max(-segExtent, -b1), segExtent);
+ sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
+ }
+ }
+ } else {
+ // Ray and segment are parallel.
+ s1 = a01 > 0 ? -segExtent : segExtent;
+ s0 = Math.max(0, -(a01 * s1 + b0));
+ sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
+ }
+
+ if (optionalPointOnRay) {
+ optionalPointOnRay.copy(this.direction).multiplyScalar(s0).add(this.origin);
+ }
+
+ if (optionalPointOnSegment) {
+ optionalPointOnSegment.copy(_segDir).multiplyScalar(s1).add(_segCenter);
+ }
+
+ return sqrDist;
+ }
+
+ intersectSphere(sphere, target) {
+ _vector$a.subVectors(sphere.center, this.origin);
+
+ const tca = _vector$a.dot(this.direction);
+
+ const d2 = _vector$a.dot(_vector$a) - tca * tca;
+ const radius2 = sphere.radius * sphere.radius;
+ if (d2 > radius2) return null;
+ const thc = Math.sqrt(radius2 - d2); // t0 = first intersect point - entrance on front of sphere
+
+ const t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere
+
+ const t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null
+
+ if (t0 < 0 && t1 < 0) return null; // test to see if t0 is behind the ray:
+ // if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
+ // in order to always return an intersect point that is in front of the ray.
+
+ if (t0 < 0) return this.at(t1, target); // else t0 is in front of the ray, so return the first collision point scaled by t0
+
+ return this.at(t0, target);
+ }
+
+ intersectsSphere(sphere) {
+ return this.distanceSqToPoint(sphere.center) <= sphere.radius * sphere.radius;
+ }
+
+ distanceToPlane(plane) {
+ const denominator = plane.normal.dot(this.direction);
+
+ if (denominator === 0) {
+ // line is coplanar, return origin
+ if (plane.distanceToPoint(this.origin) === 0) {
+ return 0;
+ } // Null is preferable to undefined since undefined means.... it is undefined
+
+
+ return null;
+ }
+
+ const t = -(this.origin.dot(plane.normal) + plane.constant) / denominator; // Return if the ray never intersects the plane
+
+ return t >= 0 ? t : null;
+ }
+
+ intersectPlane(plane, target) {
+ const t = this.distanceToPlane(plane);
+
+ if (t === null) {
+ return null;
+ }
+
+ return this.at(t, target);
+ }
+
+ intersectsPlane(plane) {
+ // check if the ray lies on the plane first
+ const distToPoint = plane.distanceToPoint(this.origin);
+
+ if (distToPoint === 0) {
+ return true;
+ }
+
+ const denominator = plane.normal.dot(this.direction);
+
+ if (denominator * distToPoint < 0) {
+ return true;
+ } // ray origin is behind the plane (and is pointing behind it)
+
+
+ return false;
+ }
+
+ intersectBox(box, target) {
+ let tmin, tmax, tymin, tymax, tzmin, tzmax;
+ const invdirx = 1 / this.direction.x,
+ invdiry = 1 / this.direction.y,
+ invdirz = 1 / this.direction.z;
+ const origin = this.origin;
+
+ if (invdirx >= 0) {
+ tmin = (box.min.x - origin.x) * invdirx;
+ tmax = (box.max.x - origin.x) * invdirx;
+ } else {
+ tmin = (box.max.x - origin.x) * invdirx;
+ tmax = (box.min.x - origin.x) * invdirx;
+ }
+
+ if (invdiry >= 0) {
+ tymin = (box.min.y - origin.y) * invdiry;
+ tymax = (box.max.y - origin.y) * invdiry;
+ } else {
+ tymin = (box.max.y - origin.y) * invdiry;
+ tymax = (box.min.y - origin.y) * invdiry;
+ }
+
+ if (tmin > tymax || tymin > tmax) return null; // These lines also handle the case where tmin or tmax is NaN
+ // (result of 0 * Infinity). x !== x returns true if x is NaN
+
+ if (tymin > tmin || tmin !== tmin) tmin = tymin;
+ if (tymax < tmax || tmax !== tmax) tmax = tymax;
+
+ if (invdirz >= 0) {
+ tzmin = (box.min.z - origin.z) * invdirz;
+ tzmax = (box.max.z - origin.z) * invdirz;
+ } else {
+ tzmin = (box.max.z - origin.z) * invdirz;
+ tzmax = (box.min.z - origin.z) * invdirz;
+ }
+
+ if (tmin > tzmax || tzmin > tmax) return null;
+ if (tzmin > tmin || tmin !== tmin) tmin = tzmin;
+ if (tzmax < tmax || tmax !== tmax) tmax = tzmax; //return point closest to the ray (positive side)
+
+ if (tmax < 0) return null;
+ return this.at(tmin >= 0 ? tmin : tmax, target);
+ }
+
+ intersectsBox(box) {
+ return this.intersectBox(box, _vector$a) !== null;
+ }
+
+ intersectTriangle(a, b, c, backfaceCulling, target) {
+ // Compute the offset origin, edges, and normal.
+ // from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
+ _edge1.subVectors(b, a);
+
+ _edge2.subVectors(c, a);
+
+ _normal$1.crossVectors(_edge1, _edge2); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
+ // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
+ // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
+ // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
+ // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
+
+
+ let DdN = this.direction.dot(_normal$1);
+ let sign;
+
+ if (DdN > 0) {
+ if (backfaceCulling) return null;
+ sign = 1;
+ } else if (DdN < 0) {
+ sign = -1;
+ DdN = -DdN;
+ } else {
+ return null;
+ }
+
+ _diff.subVectors(this.origin, a);
+
+ const DdQxE2 = sign * this.direction.dot(_edge2.crossVectors(_diff, _edge2)); // b1 < 0, no intersection
+
+ if (DdQxE2 < 0) {
+ return null;
+ }
+
+ const DdE1xQ = sign * this.direction.dot(_edge1.cross(_diff)); // b2 < 0, no intersection
+
+ if (DdE1xQ < 0) {
+ return null;
+ } // b1+b2 > 1, no intersection
+
+
+ if (DdQxE2 + DdE1xQ > DdN) {
+ return null;
+ } // Line intersects triangle, check if ray does.
+
+
+ const QdN = -sign * _diff.dot(_normal$1); // t < 0, no intersection
+
+
+ if (QdN < 0) {
+ return null;
+ } // Ray intersects triangle.
+
+
+ return this.at(QdN / DdN, target);
+ }
+
+ applyMatrix4(matrix4) {
+ this.origin.applyMatrix4(matrix4);
+ this.direction.transformDirection(matrix4);
+ return this;
+ }
+
+ equals(ray) {
+ return ray.origin.equals(this.origin) && ray.direction.equals(this.direction);
+ }
+
+ clone() {
+ return new this.constructor().copy(this);
+ }
+
+ }
+
+ class Matrix4 {
+ constructor() {
+ this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1];
+
+ if (arguments.length > 0) {
+ console.error('THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.');
+ }
+ }
+
+ set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) {
+ const te = this.elements;
+ te[0] = n11;
+ te[4] = n12;
+ te[8] = n13;
+ te[12] = n14;
+ te[1] = n21;
+ te[5] = n22;
+ te[9] = n23;
+ te[13] = n24;
+ te[2] = n31;
+ te[6] = n32;
+ te[10] = n33;
+ te[14] = n34;
+ te[3] = n41;
+ te[7] = n42;
+ te[11] = n43;
+ te[15] = n44;
+ return this;
+ }
+
+ identity() {
+ this.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
+ return this;
+ }
+
+ clone() {
+ return new Matrix4().fromArray(this.elements);
+ }
+
+ copy(m) {
+ const te = this.elements;
+ const me = m.elements;
+ te[0] = me[0];
+ te[1] = me[1];
+ te[2] = me[2];
+ te[3] = me[3];
+ te[4] = me[4];
+ te[5] = me[5];
+ te[6] = me[6];
+ te[7] = me[7];
+ te[8] = me[8];
+ te[9] = me[9];
+ te[10] = me[10];
+ te[11] = me[11];
+ te[12] = me[12];
+ te[13] = me[13];
+ te[14] = me[14];
+ te[15] = me[15];
+ return this;
+ }
+
+ copyPosition(m) {
+ const te = this.elements,
+ me = m.elements;
+ te[12] = me[12];
+ te[13] = me[13];
+ te[14] = me[14];
+ return this;
+ }
+
+ setFromMatrix3(m) {
+ const me = m.elements;
+ this.set(me[0], me[3], me[6], 0, me[1], me[4], me[7], 0, me[2], me[5], me[8], 0, 0, 0, 0, 1);
+ return this;
+ }
+
+ extractBasis(xAxis, yAxis, zAxis) {
+ xAxis.setFromMatrixColumn(this, 0);
+ yAxis.setFromMatrixColumn(this, 1);
+ zAxis.setFromMatrixColumn(this, 2);
+ return this;
+ }
+
+ makeBasis(xAxis, yAxis, zAxis) {
+ this.set(xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1);
+ return this;
+ }
+
+ extractRotation(m) {
+ // this method does not support reflection matrices
+ const te = this.elements;
+ const me = m.elements;
+
+ const scaleX = 1 / _v1$5.setFromMatrixColumn(m, 0).length();
+
+ const scaleY = 1 / _v1$5.setFromMatrixColumn(m, 1).length();
+
+ const scaleZ = 1 / _v1$5.setFromMatrixColumn(m, 2).length();
+
+ te[0] = me[0] * scaleX;
+ te[1] = me[1] * scaleX;
+ te[2] = me[2] * scaleX;
+ te[3] = 0;
+ te[4] = me[4] * scaleY;
+ te[5] = me[5] * scaleY;
+ te[6] = me[6] * scaleY;
+ te[7] = 0;
+ te[8] = me[8] * scaleZ;
+ te[9] = me[9] * scaleZ;
+ te[10] = me[10] * scaleZ;
+ te[11] = 0;
+ te[12] = 0;
+ te[13] = 0;
+ te[14] = 0;
+ te[15] = 1;
+ return this;
+ }
+
+ makeRotationFromEuler(euler) {
+ if (!(euler && euler.isEuler)) {
+ console.error('THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.');
+ }
+
+ const te = this.elements;
+ const x = euler.x,
+ y = euler.y,
+ z = euler.z;
+ const a = Math.cos(x),
+ b = Math.sin(x);
+ const c = Math.cos(y),
+ d = Math.sin(y);
+ const e = Math.cos(z),
+ f = Math.sin(z);
+
+ if (euler.order === 'XYZ') {
+ const ae = a * e,
+ af = a * f,
+ be = b * e,
+ bf = b * f;
+ te[0] = c * e;
+ te[4] = -c * f;
+ te[8] = d;
+ te[1] = af + be * d;
+ te[5] = ae - bf * d;
+ te[9] = -b * c;
+ te[2] = bf - ae * d;
+ te[6] = be + af * d;
+ te[10] = a * c;
+ } else if (euler.order === 'YXZ') {
+ const ce = c * e,
+ cf = c * f,
+ de = d * e,
+ df = d * f;
+ te[0] = ce + df * b;
+ te[4] = de * b - cf;
+ te[8] = a * d;
+ te[1] = a * f;
+ te[5] = a * e;
+ te[9] = -b;
+ te[2] = cf * b - de;
+ te[6] = df + ce * b;
+ te[10] = a * c;
+ } else if (euler.order === 'ZXY') {
+ const ce = c * e,
+ cf = c * f,
+ de = d * e,
+ df = d * f;
+ te[0] = ce - df * b;
+ te[4] = -a * f;
+ te[8] = de + cf * b;
+ te[1] = cf + de * b;
+ te[5] = a * e;
+ te[9] = df - ce * b;
+ te[2] = -a * d;
+ te[6] = b;
+ te[10] = a * c;
+ } else if (euler.order === 'ZYX') {
+ const ae = a * e,
+ af = a * f,
+ be = b * e,
+ bf = b * f;
+ te[0] = c * e;
+ te[4] = be * d - af;
+ te[8] = ae * d + bf;
+ te[1] = c * f;
+ te[5] = bf * d + ae;
+ te[9] = af * d - be;
+ te[2] = -d;
+ te[6] = b * c;
+ te[10] = a * c;
+ } else if (euler.order === 'YZX') {
+ const ac = a * c,
+ ad = a * d,
+ bc = b * c,
+ bd = b * d;
+ te[0] = c * e;
+ te[4] = bd - ac * f;
+ te[8] = bc * f + ad;
+ te[1] = f;
+ te[5] = a * e;
+ te[9] = -b * e;
+ te[2] = -d * e;
+ te[6] = ad * f + bc;
+ te[10] = ac - bd * f;
+ } else if (euler.order === 'XZY') {
+ const ac = a * c,
+ ad = a * d,
+ bc = b * c,
+ bd = b * d;
+ te[0] = c * e;
+ te[4] = -f;
+ te[8] = d * e;
+ te[1] = ac * f + bd;
+ te[5] = a * e;
+ te[9] = ad * f - bc;
+ te[2] = bc * f - ad;
+ te[6] = b * e;
+ te[10] = bd * f + ac;
+ } // bottom row
+
+
+ te[3] = 0;
+ te[7] = 0;
+ te[11] = 0; // last column
+
+ te[12] = 0;
+ te[13] = 0;
+ te[14] = 0;
+ te[15] = 1;
+ return this;
+ }
+
+ makeRotationFromQuaternion(q) {
+ return this.compose(_zero, q, _one);
+ }
+
+ lookAt(eye, target, up) {
+ const te = this.elements;
+
+ _z.subVectors(eye, target);
+
+ if (_z.lengthSq() === 0) {
+ // eye and target are in the same position
+ _z.z = 1;
+ }
+
+ _z.normalize();
+
+ _x.crossVectors(up, _z);
+
+ if (_x.lengthSq() === 0) {
+ // up and z are parallel
+ if (Math.abs(up.z) === 1) {
+ _z.x += 0.0001;
+ } else {
+ _z.z += 0.0001;
+ }
+
+ _z.normalize();
+
+ _x.crossVectors(up, _z);
+ }
+
+ _x.normalize();
+
+ _y.crossVectors(_z, _x);
+
+ te[0] = _x.x;
+ te[4] = _y.x;
+ te[8] = _z.x;
+ te[1] = _x.y;
+ te[5] = _y.y;
+ te[9] = _z.y;
+ te[2] = _x.z;
+ te[6] = _y.z;
+ te[10] = _z.z;
+ return this;
+ }
+
+ multiply(m, n) {
+ if (n !== undefined) {
+ console.warn('THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.');
+ return this.multiplyMatrices(m, n);
+ }
+
+ return this.multiplyMatrices(this, m);
+ }
+
+ premultiply(m) {
+ return this.multiplyMatrices(m, this);
+ }
+
+ multiplyMatrices(a, b) {
+ const ae = a.elements;
+ const be = b.elements;
+ const te = this.elements;
+ const a11 = ae[0],
+ a12 = ae[4],
+ a13 = ae[8],
+ a14 = ae[12];
+ const a21 = ae[1],
+ a22 = ae[5],
+ a23 = ae[9],
+ a24 = ae[13];
+ const a31 = ae[2],
+ a32 = ae[6],
+ a33 = ae[10],
+ a34 = ae[14];
+ const a41 = ae[3],
+ a42 = ae[7],
+ a43 = ae[11],
+ a44 = ae[15];
+ const b11 = be[0],
+ b12 = be[4],
+ b13 = be[8],
+ b14 = be[12];
+ const b21 = be[1],
+ b22 = be[5],
+ b23 = be[9],
+ b24 = be[13];
+ const b31 = be[2],
+ b32 = be[6],
+ b33 = be[10],
+ b34 = be[14];
+ const b41 = be[3],
+ b42 = be[7],
+ b43 = be[11],
+ b44 = be[15];
+ te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
+ te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
+ te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
+ te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
+ te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
+ te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
+ te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
+ te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
+ te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
+ te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
+ te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
+ te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
+ te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
+ te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
+ te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
+ te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
+ return this;
+ }
+
+ multiplyScalar(s) {
+ const te = this.elements;
+ te[0] *= s;
+ te[4] *= s;
+ te[8] *= s;
+ te[12] *= s;
+ te[1] *= s;
+ te[5] *= s;
+ te[9] *= s;
+ te[13] *= s;
+ te[2] *= s;
+ te[6] *= s;
+ te[10] *= s;
+ te[14] *= s;
+ te[3] *= s;
+ te[7] *= s;
+ te[11] *= s;
+ te[15] *= s;
+ return this;
+ }
+
+ determinant() {
+ const te = this.elements;
+ const n11 = te[0],
+ n12 = te[4],
+ n13 = te[8],
+ n14 = te[12];
+ const n21 = te[1],
+ n22 = te[5],
+ n23 = te[9],
+ n24 = te[13];
+ const n31 = te[2],
+ n32 = te[6],
+ n33 = te[10],
+ n34 = te[14];
+ const n41 = te[3],
+ n42 = te[7],
+ n43 = te[11],
+ n44 = te[15]; //TODO: make this more efficient
+ //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
+
+ return n41 * (+n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (+n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (+n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31);
+ }
+
+ transpose() {
+ const te = this.elements;
+ let tmp;
+ tmp = te[1];
+ te[1] = te[4];
+ te[4] = tmp;
+ tmp = te[2];
+ te[2] = te[8];
+ te[8] = tmp;
+ tmp = te[6];
+ te[6] = te[9];
+ te[9] = tmp;
+ tmp = te[3];
+ te[3] = te[12];
+ te[12] = tmp;
+ tmp = te[7];
+ te[7] = te[13];
+ te[13] = tmp;
+ tmp = te[11];
+ te[11] = te[14];
+ te[14] = tmp;
+ return this;
+ }
+
+ setPosition(x, y, z) {
+ const te = this.elements;
+
+ if (x.isVector3) {
+ te[12] = x.x;
+ te[13] = x.y;
+ te[14] = x.z;
+ } else {
+ te[12] = x;
+ te[13] = y;
+ te[14] = z;
+ }
+
+ return this;
+ }
+
+ invert() {
+ // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
+ const te = this.elements,
+ n11 = te[0],
+ n21 = te[1],
+ n31 = te[2],
+ n41 = te[3],
+ n12 = te[4],
+ n22 = te[5],
+ n32 = te[6],
+ n42 = te[7],
+ n13 = te[8],
+ n23 = te[9],
+ n33 = te[10],
+ n43 = te[11],
+ n14 = te[12],
+ n24 = te[13],
+ n34 = te[14],
+ n44 = te[15],
+ t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
+ t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
+ t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
+ t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
+ const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
+ if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
+ const detInv = 1 / det;
+ te[0] = t11 * detInv;
+ te[1] = (n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44) * detInv;
+ te[2] = (n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44) * detInv;
+ te[3] = (n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43) * detInv;
+ te[4] = t12 * detInv;
+ te[5] = (n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44) * detInv;
+ te[6] = (n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44) * detInv;
+ te[7] = (n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43) * detInv;
+ te[8] = t13 * detInv;
+ te[9] = (n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44) * detInv;
+ te[10] = (n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44) * detInv;
+ te[11] = (n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43) * detInv;
+ te[12] = t14 * detInv;
+ te[13] = (n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34) * detInv;
+ te[14] = (n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34) * detInv;
+ te[15] = (n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33) * detInv;
+ return this;
+ }
+
+ scale(v) {
+ const te = this.elements;
+ const x = v.x,
+ y = v.y,
+ z = v.z;
+ te[0] *= x;
+ te[4] *= y;
+ te[8] *= z;
+ te[1] *= x;
+ te[5] *= y;
+ te[9] *= z;
+ te[2] *= x;
+ te[6] *= y;
+ te[10] *= z;
+ te[3] *= x;
+ te[7] *= y;
+ te[11] *= z;
+ return this;
+ }
+
+ getMaxScaleOnAxis() {
+ const te = this.elements;
+ const scaleXSq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2];
+ const scaleYSq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6];
+ const scaleZSq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10];
+ return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq));
+ }
+
+ makeTranslation(x, y, z) {
+ this.set(1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1);
+ return this;
+ }
+
+ makeRotationX(theta) {
+ const c = Math.cos(theta),
+ s = Math.sin(theta);
+ this.set(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1);
+ return this;
+ }
+
+ makeRotationY(theta) {
+ const c = Math.cos(theta),
+ s = Math.sin(theta);
+ this.set(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1);
+ return this;
+ }
+
+ makeRotationZ(theta) {
+ const c = Math.cos(theta),
+ s = Math.sin(theta);
+ this.set(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
+ return this;
+ }
+
+ makeRotationAxis(axis, angle) {
+ // Based on http://www.gamedev.net/reference/articles/article1199.asp
+ const c = Math.cos(angle);
+ const s = Math.sin(angle);
+ const t = 1 - c;
+ const x = axis.x,
+ y = axis.y,
+ z = axis.z;
+ const tx = t * x,
+ ty = t * y;
+ this.set(tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1);
+ return this;
+ }
+
+ makeScale(x, y, z) {
+ this.set(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1);
+ return this;
+ }
+
+ makeShear(xy, xz, yx, yz, zx, zy) {
+ this.set(1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1);
+ return this;
+ }
+
+ compose(position, quaternion, scale) {
+ const te = this.elements;
+ const x = quaternion._x,
+ y = quaternion._y,
+ z = quaternion._z,
+ w = quaternion._w;
+ const x2 = x + x,
+ y2 = y + y,
+ z2 = z + z;
+ const xx = x * x2,
+ xy = x * y2,
+ xz = x * z2;
+ const yy = y * y2,
+ yz = y * z2,
+ zz = z * z2;
+ const wx = w * x2,
+ wy = w * y2,
+ wz = w * z2;
+ const sx = scale.x,
+ sy = scale.y,
+ sz = scale.z;
+ te[0] = (1 - (yy + zz)) * sx;
+ te[1] = (xy + wz) * sx;
+ te[2] = (xz - wy) * sx;
+ te[3] = 0;
+ te[4] = (xy - wz) * sy;
+ te[5] = (1 - (xx + zz)) * sy;
+ te[6] = (yz + wx) * sy;
+ te[7] = 0;
+ te[8] = (xz + wy) * sz;
+ te[9] = (yz - wx) * sz;
+ te[10] = (1 - (xx + yy)) * sz;
+ te[11] = 0;
+ te[12] = position.x;
+ te[13] = position.y;
+ te[14] = position.z;
+ te[15] = 1;
+ return this;
+ }
+
+ decompose(position, quaternion, scale) {
+ const te = this.elements;
+
+ let sx = _v1$5.set(te[0], te[1], te[2]).length();
+
+ const sy = _v1$5.set(te[4], te[5], te[6]).length();
+
+ const sz = _v1$5.set(te[8], te[9], te[10]).length(); // if determine is negative, we need to invert one scale
+
+
+ const det = this.determinant();
+ if (det < 0) sx = -sx;
+ position.x = te[12];
+ position.y = te[13];
+ position.z = te[14]; // scale the rotation part
+
+ _m1$2.copy(this);
+
+ const invSX = 1 / sx;
+ const invSY = 1 / sy;
+ const invSZ = 1 / sz;
+ _m1$2.elements[0] *= invSX;
+ _m1$2.elements[1] *= invSX;
+ _m1$2.elements[2] *= invSX;
+ _m1$2.elements[4] *= invSY;
+ _m1$2.elements[5] *= invSY;
+ _m1$2.elements[6] *= invSY;
+ _m1$2.elements[8] *= invSZ;
+ _m1$2.elements[9] *= invSZ;
+ _m1$2.elements[10] *= invSZ;
+ quaternion.setFromRotationMatrix(_m1$2);
+ scale.x = sx;
+ scale.y = sy;
+ scale.z = sz;
+ return this;
+ }
+
+ makePerspective(left, right, top, bottom, near, far) {
+ if (far === undefined) {
+ console.warn('THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.');
+ }
+
+ const te = this.elements;
+ const x = 2 * near / (right - left);
+ const y = 2 * near / (top - bottom);
+ const a = (right + left) / (right - left);
+ const b = (top + bottom) / (top - bottom);
+ const c = -(far + near) / (far - near);
+ const d = -2 * far * near / (far - near);
+ te[0] = x;
+ te[4] = 0;
+ te[8] = a;
+ te[12] = 0;
+ te[1] = 0;
+ te[5] = y;
+ te[9] = b;
+ te[13] = 0;
+ te[2] = 0;
+ te[6] = 0;
+ te[10] = c;
+ te[14] = d;
+ te[3] = 0;
+ te[7] = 0;
+ te[11] = -1;
+ te[15] = 0;
+ return this;
+ }
+
+ makeOrthographic(left, right, top, bottom, near, far) {
+ const te = this.elements;
+ const w = 1.0 / (right - left);
+ const h = 1.0 / (top - bottom);
+ const p = 1.0 / (far - near);
+ const x = (right + left) * w;
+ const y = (top + bottom) * h;
+ const z = (far + near) * p;
+ te[0] = 2 * w;
+ te[4] = 0;
+ te[8] = 0;
+ te[12] = -x;
+ te[1] = 0;
+ te[5] = 2 * h;
+ te[9] = 0;
+ te[13] = -y;
+ te[2] = 0;
+ te[6] = 0;
+ te[10] = -2 * p;
+ te[14] = -z;
+ te[3] = 0;
+ te[7] = 0;
+ te[11] = 0;
+ te[15] = 1;
+ return this;
+ }
+
+ equals(matrix) {
+ const te = this.elements;
+ const me = matrix.elements;
+
+ for (let i = 0; i < 16; i++) {
+ if (te[i] !== me[i]) return false;
+ }
+
+ return true;
+ }
+
+ fromArray(array, offset = 0) {
+ for (let i = 0; i < 16; i++) {
+ this.elements[i] = array[i + offset];
+ }
+
+ return this;
+ }
+
+ toArray(array = [], offset = 0) {
+ const te = this.elements;
+ array[offset] = te[0];
+ array[offset + 1] = te[1];
+ array[offset + 2] = te[2];
+ array[offset + 3] = te[3];
+ array[offset + 4] = te[4];
+ array[offset + 5] = te[5];
+ array[offset + 6] = te[6];
+ array[offset + 7] = te[7];
+ array[offset + 8] = te[8];
+ array[offset + 9] = te[9];
+ array[offset + 10] = te[10];
+ array[offset + 11] = te[11];
+ array[offset + 12] = te[12];
+ array[offset + 13] = te[13];
+ array[offset + 14] = te[14];
+ array[offset + 15] = te[15];
+ return array;
+ }
+
+ }
+
+ Matrix4.prototype.isMatrix4 = true;
+
+ const _v1$5 = /*@__PURE__*/new Vector3();
+
+ const _m1$2 = /*@__PURE__*/new Matrix4();
+
+ const _zero = /*@__PURE__*/new Vector3(0, 0, 0);
+
+ const _one = /*@__PURE__*/new Vector3(1, 1, 1);
+
+ const _x = /*@__PURE__*/new Vector3();
+
+ const _y = /*@__PURE__*/new Vector3();
+
+ const _z = /*@__PURE__*/new Vector3();
+
+ const _matrix$1 = /*@__PURE__*/new Matrix4();
+
+ const _quaternion$3 = /*@__PURE__*/new Quaternion();
+
+ class Euler {
+ constructor(x = 0, y = 0, z = 0, order = Euler.DefaultOrder) {
+ this._x = x;
+ this._y = y;
+ this._z = z;
+ this._order = order;
+ }
+
+ get x() {
+ return this._x;
+ }
+
+ set x(value) {
+ this._x = value;
+
+ this._onChangeCallback();
+ }
+
+ get y() {
+ return this._y;
+ }
+
+ set y(value) {
+ this._y = value;
+
+ this._onChangeCallback();
+ }
+
+ get z() {
+ return this._z;
+ }
+
+ set z(value) {
+ this._z = value;
+
+ this._onChangeCallback();
+ }
+
+ get order() {
+ return this._order;
+ }
+
+ set order(value) {
+ this._order = value;
+
+ this._onChangeCallback();
+ }
+
+ set(x, y, z, order = this._order) {
+ this._x = x;
+ this._y = y;
+ this._z = z;
+ this._order = order;
+
+ this._onChangeCallback();
+
+ return this;
+ }
+
+ clone() {
+ return new this.constructor(this._x, this._y, this._z, this._order);
+ }
+
+ copy(euler) {
+ this._x = euler._x;
+ this._y = euler._y;
+ this._z = euler._z;
+ this._order = euler._order;
+
+ this._onChangeCallback();
+
+ return this;
+ }
+
+ setFromRotationMatrix(m, order = this._order, update = true) {
+ // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
+ const te = m.elements;
+ const m11 = te[0],
+ m12 = te[4],
+ m13 = te[8];
+ const m21 = te[1],
+ m22 = te[5],
+ m23 = te[9];
+ const m31 = te[2],
+ m32 = te[6],
+ m33 = te[10];
+
+ switch (order) {
+ case 'XYZ':
+ this._y = Math.asin(clamp(m13, -1, 1));
+
+ if (Math.abs(m13) < 0.9999999) {
+ this._x = Math.atan2(-m23, m33);
+ this._z = Math.atan2(-m12, m11);
+ } else {
+ this._x = Math.atan2(m32, m22);
+ this._z = 0;
+ }
+
+ break;
+
+ case 'YXZ':
+ this._x = Math.asin(-clamp(m23, -1, 1));
+
+ if (Math.abs(m23) < 0.9999999) {
+ this._y = Math.atan2(m13, m33);
+ this._z = Math.atan2(m21, m22);
+ } else {
+ this._y = Math.atan2(-m31, m11);
+ this._z = 0;
+ }
+
+ break;
+
+ case 'ZXY':
+ this._x = Math.asin(clamp(m32, -1, 1));
+
+ if (Math.abs(m32) < 0.9999999) {
+ this._y = Math.atan2(-m31, m33);
+ this._z = Math.atan2(-m12, m22);
+ } else {
+ this._y = 0;
+ this._z = Math.atan2(m21, m11);
+ }
+
+ break;
+
+ case 'ZYX':
+ this._y = Math.asin(-clamp(m31, -1, 1));
+
+ if (Math.abs(m31) < 0.9999999) {
+ this._x = Math.atan2(m32, m33);
+ this._z = Math.atan2(m21, m11);
+ } else {
+ this._x = 0;
+ this._z = Math.atan2(-m12, m22);
+ }
+
+ break;
+
+ case 'YZX':
+ this._z = Math.asin(clamp(m21, -1, 1));
+
+ if (Math.abs(m21) < 0.9999999) {
+ this._x = Math.atan2(-m23, m22);
+ this._y = Math.atan2(-m31, m11);
+ } else {
+ this._x = 0;
+ this._y = Math.atan2(m13, m33);
+ }
+
+ break;
+
+ case 'XZY':
+ this._z = Math.asin(-clamp(m12, -1, 1));
+
+ if (Math.abs(m12) < 0.9999999) {
+ this._x = Math.atan2(m32, m22);
+ this._y = Math.atan2(m13, m11);
+ } else {
+ this._x = Math.atan2(-m23, m33);
+ this._y = 0;
+ }
+
+ break;
+
+ default:
+ console.warn('THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order);
+ }
+
+ this._order = order;
+ if (update === true) this._onChangeCallback();
+ return this;
+ }
+
+ setFromQuaternion(q, order, update) {
+ _matrix$1.makeRotationFromQuaternion(q);
+
+ return this.setFromRotationMatrix(_matrix$1, order, update);
+ }
+
+ setFromVector3(v, order = this._order) {
+ return this.set(v.x, v.y, v.z, order);
+ }
+
+ reorder(newOrder) {
+ // WARNING: this discards revolution information -bhouston
+ _quaternion$3.setFromEuler(this);
+
+ return this.setFromQuaternion(_quaternion$3, newOrder);
+ }
+
+ equals(euler) {
+ return euler._x === this._x && euler._y === this._y && euler._z === this._z && euler._order === this._order;
+ }
+
+ fromArray(array) {
+ this._x = array[0];
+ this._y = array[1];
+ this._z = array[2];
+ if (array[3] !== undefined) this._order = array[3];
+
+ this._onChangeCallback();
+
+ return this;
+ }
+
+ toArray(array = [], offset = 0) {
+ array[offset] = this._x;
+ array[offset + 1] = this._y;
+ array[offset + 2] = this._z;
+ array[offset + 3] = this._order;
+ return array;
+ }
+
+ toVector3(optionalResult) {
+ if (optionalResult) {
+ return optionalResult.set(this._x, this._y, this._z);
+ } else {
+ return new Vector3(this._x, this._y, this._z);
+ }
+ }
+
+ _onChange(callback) {
+ this._onChangeCallback = callback;
+ return this;
+ }
+
+ _onChangeCallback() {}
+
+ }
+
+ Euler.prototype.isEuler = true;
+ Euler.DefaultOrder = 'XYZ';
+ Euler.RotationOrders = ['XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX'];
+
+ class Layers {
+ constructor() {
+ this.mask = 1 | 0;
+ }
+
+ set(channel) {
+ this.mask = (1 << channel | 0) >>> 0;
+ }
+
+ enable(channel) {
+ this.mask |= 1 << channel | 0;
+ }
+
+ enableAll() {
+ this.mask = 0xffffffff | 0;
+ }
+
+ toggle(channel) {
+ this.mask ^= 1 << channel | 0;
+ }
+
+ disable(channel) {
+ this.mask &= ~(1 << channel | 0);
+ }
+
+ disableAll() {
+ this.mask = 0;
+ }
+
+ test(layers) {
+ return (this.mask & layers.mask) !== 0;
+ }
+
+ isEnabled(channel) {
+ return (this.mask & (1 << channel | 0)) !== 0;
+ }
+
+ }
+
+ let _object3DId = 0;
+
+ const _v1$4 = /*@__PURE__*/new Vector3();
+
+ const _q1 = /*@__PURE__*/new Quaternion();
+
+ const _m1$1 = /*@__PURE__*/new Matrix4();
+
+ const _target = /*@__PURE__*/new Vector3();
+
+ const _position$3 = /*@__PURE__*/new Vector3();
+
+ const _scale$2 = /*@__PURE__*/new Vector3();
+
+ const _quaternion$2 = /*@__PURE__*/new Quaternion();
+
+ const _xAxis = /*@__PURE__*/new Vector3(1, 0, 0);
+
+ const _yAxis = /*@__PURE__*/new Vector3(0, 1, 0);
+
+ const _zAxis = /*@__PURE__*/new Vector3(0, 0, 1);
+
+ const _addedEvent = {
+ type: 'added'
+ };
+ const _removedEvent = {
+ type: 'removed'
+ };
+
+ class Object3D extends EventDispatcher {
+ constructor() {
+ super();
+ Object.defineProperty(this, 'id', {
+ value: _object3DId++
+ });
+ this.uuid = generateUUID();
+ this.name = '';
+ this.type = 'Object3D';
+ this.parent = null;
+ this.children = [];
+ this.up = Object3D.DefaultUp.clone();
+ const position = new Vector3();
+ const rotation = new Euler();
+ const quaternion = new Quaternion();
+ const scale = new Vector3(1, 1, 1);
+
+ function onRotationChange() {
+ quaternion.setFromEuler(rotation, false);
+ }
+
+ function onQuaternionChange() {
+ rotation.setFromQuaternion(quaternion, undefined, false);
+ }
+
+ rotation._onChange(onRotationChange);
+
+ quaternion._onChange(onQuaternionChange);
+
+ Object.defineProperties(this, {
+ position: {
+ configurable: true,
+ enumerable: true,
+ value: position
+ },
+ rotation: {
+ configurable: true,
+ enumerable: true,
+ value: rotation
+ },
+ quaternion: {
+ configurable: true,
+ enumerable: true,
+ value: quaternion
+ },
+ scale: {
+ configurable: true,
+ enumerable: true,
+ value: scale
+ },
+ modelViewMatrix: {
+ value: new Matrix4()
+ },
+ normalMatrix: {
+ value: new Matrix3()
+ }
+ });
+ this.matrix = new Matrix4();
+ this.matrixWorld = new Matrix4();
+ this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
+ this.matrixWorldNeedsUpdate = false;
+ this.layers = new Layers();
+ this.visible = true;
+ this.castShadow = false;
+ this.receiveShadow = false;
+ this.frustumCulled = true;
+ this.renderOrder = 0;
+ this.animations = [];
+ this.userData = {};
+ }
+
+ onBeforeRender() {}
+
+ onAfterRender() {}
+
+ applyMatrix4(matrix) {
+ if (this.matrixAutoUpdate) this.updateMatrix();
+ this.matrix.premultiply(matrix);
+ this.matrix.decompose(this.position, this.quaternion, this.scale);
+ }
+
+ applyQuaternion(q) {
+ this.quaternion.premultiply(q);
+ return this;
+ }
+
+ setRotationFromAxisAngle(axis, angle) {
+ // assumes axis is normalized
+ this.quaternion.setFromAxisAngle(axis, angle);
+ }
+
+ setRotationFromEuler(euler) {
+ this.quaternion.setFromEuler(euler, true);
+ }
+
+ setRotationFromMatrix(m) {
+ // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
+ this.quaternion.setFromRotationMatrix(m);
+ }
+
+ setRotationFromQuaternion(q) {
+ // assumes q is normalized
+ this.quaternion.copy(q);
+ }
+
+ rotateOnAxis(axis, angle) {
+ // rotate object on axis in object space
+ // axis is assumed to be normalized
+ _q1.setFromAxisAngle(axis, angle);
+
+ this.quaternion.multiply(_q1);
+ return this;
+ }
+
+ rotateOnWorldAxis(axis, angle) {
+ // rotate object on axis in world space
+ // axis is assumed to be normalized
+ // method assumes no rotated parent
+ _q1.setFromAxisAngle(axis, angle);
+
+ this.quaternion.premultiply(_q1);
+ return this;
+ }
+
+ rotateX(angle) {
+ return this.rotateOnAxis(_xAxis, angle);
+ }
+
+ rotateY(angle) {
+ return this.rotateOnAxis(_yAxis, angle);
+ }
+
+ rotateZ(angle) {
+ return this.rotateOnAxis(_zAxis, angle);
+ }
+
+ translateOnAxis(axis, distance) {
+ // translate object by distance along axis in object space
+ // axis is assumed to be normalized
+ _v1$4.copy(axis).applyQuaternion(this.quaternion);
+
+ this.position.add(_v1$4.multiplyScalar(distance));
+ return this;
+ }
+
+ translateX(distance) {
+ return this.translateOnAxis(_xAxis, distance);
+ }
+
+ translateY(distance) {
+ return this.translateOnAxis(_yAxis, distance);
+ }
+
+ translateZ(distance) {
+ return this.translateOnAxis(_zAxis, distance);
+ }
+
+ localToWorld(vector) {
+ return vector.applyMatrix4(this.matrixWorld);
+ }
+
+ worldToLocal(vector) {
+ return vector.applyMatrix4(_m1$1.copy(this.matrixWorld).invert());
+ }
+
+ lookAt(x, y, z) {
+ // This method does not support objects having non-uniformly-scaled parent(s)
+ if (x.isVector3) {
+ _target.copy(x);
+ } else {
+ _target.set(x, y, z);
+ }
+
+ const parent = this.parent;
+ this.updateWorldMatrix(true, false);
+
+ _position$3.setFromMatrixPosition(this.matrixWorld);
+
+ if (this.isCamera || this.isLight) {
+ _m1$1.lookAt(_position$3, _target, this.up);
+ } else {
+ _m1$1.lookAt(_target, _position$3, this.up);
+ }
+
+ this.quaternion.setFromRotationMatrix(_m1$1);
+
+ if (parent) {
+ _m1$1.extractRotation(parent.matrixWorld);
+
+ _q1.setFromRotationMatrix(_m1$1);
+
+ this.quaternion.premultiply(_q1.invert());
+ }
+ }
+
+ add(object) {
+ if (arguments.length > 1) {
+ for (let i = 0; i < arguments.length; i++) {
+ this.add(arguments[i]);
+ }
+
+ return this;
+ }
+
+ if (object === this) {
+ console.error('THREE.Object3D.add: object can\'t be added as a child of itself.', object);
+ return this;
+ }
+
+ if (object && object.isObject3D) {
+ if (object.parent !== null) {
+ object.parent.remove(object);
+ }
+
+ object.parent = this;
+ this.children.push(object);
+ object.dispatchEvent(_addedEvent);
+ } else {
+ console.error('THREE.Object3D.add: object not an instance of THREE.Object3D.', object);
+ }
+
+ return this;
+ }
+
+ remove(object) {
+ if (arguments.length > 1) {
+ for (let i = 0; i < arguments.length; i++) {
+ this.remove(arguments[i]);
+ }
+
+ return this;
+ }
+
+ const index = this.children.indexOf(object);
+
+ if (index !== -1) {
+ object.parent = null;
+ this.children.splice(index, 1);
+ object.dispatchEvent(_removedEvent);
+ }
+
+ return this;
+ }
+
+ removeFromParent() {
+ const parent = this.parent;
+
+ if (parent !== null) {
+ parent.remove(this);
+ }
+
+ return this;
+ }
+
+ clear() {
+ for (let i = 0; i < this.children.length; i++) {
+ const object = this.children[i];
+ object.parent = null;
+ object.dispatchEvent(_removedEvent);
+ }
+
+ this.children.length = 0;
+ return this;
+ }
+
+ attach(object) {
+ // adds object as a child of this, while maintaining the object's world transform
+ // Note: This method does not support scene graphs having non-uniformly-scaled nodes(s)
+ this.updateWorldMatrix(true, false);
+
+ _m1$1.copy(this.matrixWorld).invert();
+
+ if (object.parent !== null) {
+ object.parent.updateWorldMatrix(true, false);
+
+ _m1$1.multiply(object.parent.matrixWorld);
+ }
+
+ object.applyMatrix4(_m1$1);
+ this.add(object);
+ object.updateWorldMatrix(false, true);
+ return this;
+ }
+
+ getObjectById(id) {
+ return this.getObjectByProperty('id', id);
+ }
+
+ getObjectByName(name) {
+ return this.getObjectByProperty('name', name);
+ }
+
+ getObjectByProperty(name, value) {
+ if (this[name] === value) return this;
+
+ for (let i = 0, l = this.children.length; i < l; i++) {
+ const child = this.children[i];
+ const object = child.getObjectByProperty(name, value);
+
+ if (object !== undefined) {
+ return object;
+ }
+ }
+
+ return undefined;
+ }
+
+ getWorldPosition(target) {
+ this.updateWorldMatrix(true, false);
+ return target.setFromMatrixPosition(this.matrixWorld);
+ }
+
+ getWorldQuaternion(target) {
+ this.updateWorldMatrix(true, false);
+ this.matrixWorld.decompose(_position$3, target, _scale$2);
+ return target;
+ }
+
+ getWorldScale(target) {
+ this.updateWorldMatrix(true, false);
+ this.matrixWorld.decompose(_position$3, _quaternion$2, target);
+ return target;
+ }
+
+ getWorldDirection(target) {
+ this.updateWorldMatrix(true, false);
+ const e = this.matrixWorld.elements;
+ return target.set(e[8], e[9], e[10]).normalize();
+ }
+
+ raycast() {}
+
+ traverse(callback) {
+ callback(this);
+ const children = this.children;
+
+ for (let i = 0, l = children.length; i < l; i++) {
+ children[i].traverse(callback);
+ }
+ }
+
+ traverseVisible(callback) {
+ if (this.visible === false) return;
+ callback(this);
+ const children = this.children;
+
+ for (let i = 0, l = children.length; i < l; i++) {
+ children[i].traverseVisible(callback);
+ }
+ }
+
+ traverseAncestors(callback) {
+ const parent = this.parent;
+
+ if (parent !== null) {
+ callback(parent);
+ parent.traverseAncestors(callback);
+ }
+ }
+
+ updateMatrix() {
+ this.matrix.compose(this.position, this.quaternion, this.scale);
+ this.matrixWorldNeedsUpdate = true;
+ }
+
+ updateMatrixWorld(force) {
+ if (this.matrixAutoUpdate) this.updateMatrix();
+
+ if (this.matrixWorldNeedsUpdate || force) {
+ if (this.parent === null) {
+ this.matrixWorld.copy(this.matrix);
+ } else {
+ this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix);
+ }
+
+ this.matrixWorldNeedsUpdate = false;
+ force = true;
+ } // update children
+
+
+ const children = this.children;
+
+ for (let i = 0, l = children.length; i < l; i++) {
+ children[i].updateMatrixWorld(force);
+ }
+ }
+
+ updateWorldMatrix(updateParents, updateChildren) {
+ const parent = this.parent;
+
+ if (updateParents === true && parent !== null) {
+ parent.updateWorldMatrix(true, false);
+ }
+
+ if (this.matrixAutoUpdate) this.updateMatrix();
+
+ if (this.parent === null) {
+ this.matrixWorld.copy(this.matrix);
+ } else {
+ this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix);
+ } // update children
+
+
+ if (updateChildren === true) {
+ const children = this.children;
+
+ for (let i = 0, l = children.length; i < l; i++) {
+ children[i].updateWorldMatrix(false, true);
+ }
+ }
+ }
+
+ toJSON(meta) {
+ // meta is a string when called from JSON.stringify
+ const isRootObject = meta === undefined || typeof meta === 'string';
+ const output = {}; // meta is a hash used to collect geometries, materials.
+ // not providing it implies that this is the root object
+ // being serialized.
+
+ if (isRootObject) {
+ // initialize meta obj
+ meta = {
+ geometries: {},
+ materials: {},
+ textures: {},
+ images: {},
+ shapes: {},
+ skeletons: {},
+ animations: {}
+ };
+ output.metadata = {
+ version: 4.5,
+ type: 'Object',
+ generator: 'Object3D.toJSON'
+ };
+ } // standard Object3D serialization
+
+
+ const object = {};
+ object.uuid = this.uuid;
+ object.type = this.type;
+ if (this.name !== '') object.name = this.name;
+ if (this.castShadow === true) object.castShadow = true;
+ if (this.receiveShadow === true) object.receiveShadow = true;
+ if (this.visible === false) object.visible = false;
+ if (this.frustumCulled === false) object.frustumCulled = false;
+ if (this.renderOrder !== 0) object.renderOrder = this.renderOrder;
+ if (JSON.stringify(this.userData) !== '{}') object.userData = this.userData;
+ object.layers = this.layers.mask;
+ object.matrix = this.matrix.toArray();
+ if (this.matrixAutoUpdate === false) object.matrixAutoUpdate = false; // object specific properties
+
+ if (this.isInstancedMesh) {
+ object.type = 'InstancedMesh';
+ object.count = this.count;
+ object.instanceMatrix = this.instanceMatrix.toJSON();
+ if (this.instanceColor !== null) object.instanceColor = this.instanceColor.toJSON();
+ } //
+
+
+ function serialize(library, element) {
+ if (library[element.uuid] === undefined) {
+ library[element.uuid] = element.toJSON(meta);
+ }
+
+ return element.uuid;
+ }
+
+ if (this.isScene) {
+ if (this.background) {
+ if (this.background.isColor) {
+ object.background = this.background.toJSON();
+ } else if (this.background.isTexture) {
+ object.background = this.background.toJSON(meta).uuid;
+ }
+ }
+
+ if (this.environment && this.environment.isTexture) {
+ object.environment = this.environment.toJSON(meta).uuid;
+ }
+ } else if (this.isMesh || this.isLine || this.isPoints) {
+ object.geometry = serialize(meta.geometries, this.geometry);
+ const parameters = this.geometry.parameters;
+
+ if (parameters !== undefined && parameters.shapes !== undefined) {
+ const shapes = parameters.shapes;
+
+ if (Array.isArray(shapes)) {
+ for (let i = 0, l = shapes.length; i < l; i++) {
+ const shape = shapes[i];
+ serialize(meta.shapes, shape);
+ }
+ } else {
+ serialize(meta.shapes, shapes);
+ }
+ }
+ }
+
+ if (this.isSkinnedMesh) {
+ object.bindMode = this.bindMode;
+ object.bindMatrix = this.bindMatrix.toArray();
+
+ if (this.skeleton !== undefined) {
+ serialize(meta.skeletons, this.skeleton);
+ object.skeleton = this.skeleton.uuid;
+ }
+ }
+
+ if (this.material !== undefined) {
+ if (Array.isArray(this.material)) {
+ const uuids = [];
+
+ for (let i = 0, l = this.material.length; i < l; i++) {
+ uuids.push(serialize(meta.materials, this.material[i]));
+ }
+
+ object.material = uuids;
+ } else {
+ object.material = serialize(meta.materials, this.material);
+ }
+ } //
+
+
+ if (this.children.length > 0) {
+ object.children = [];
+
+ for (let i = 0; i < this.children.length; i++) {
+ object.children.push(this.children[i].toJSON(meta).object);
+ }
+ } //
+
+
+ if (this.animations.length > 0) {
+ object.animations = [];
+
+ for (let i = 0; i < this.animations.length; i++) {
+ const animation = this.animations[i];
+ object.animations.push(serialize(meta.animations, animation));
+ }
+ }
+
+ if (isRootObject) {
+ const geometries = extractFromCache(meta.geometries);
+ const materials = extractFromCache(meta.materials);
+ const textures = extractFromCache(meta.textures);
+ const images = extractFromCache(meta.images);
+ const shapes = extractFromCache(meta.shapes);
+ const skeletons = extractFromCache(meta.skeletons);
+ const animations = extractFromCache(meta.animations);
+ if (geometries.length > 0) output.geometries = geometries;
+ if (materials.length > 0) output.materials = materials;
+ if (textures.length > 0) output.textures = textures;
+ if (images.length > 0) output.images = images;
+ if (shapes.length > 0) output.shapes = shapes;
+ if (skeletons.length > 0) output.skeletons = skeletons;
+ if (animations.length > 0) output.animations = animations;
+ }
+
+ output.object = object;
+ return output; // extract data from the cache hash
+ // remove metadata on each item
+ // and return as array
+
+ function extractFromCache(cache) {
+ const values = [];
+
+ for (const key in cache) {
+ const data = cache[key];
+ delete data.metadata;
+ values.push(data);
+ }
+
+ return values;
+ }
+ }
+
+ clone(recursive) {
+ return new this.constructor().copy(this, recursive);
+ }
+
+ copy(source, recursive = true) {
+ this.name = source.name;
+ this.up.copy(source.up);
+ this.position.copy(source.position);
+ this.rotation.order = source.rotation.order;
+ this.quaternion.copy(source.quaternion);
+ this.scale.copy(source.scale);
+ this.matrix.copy(source.matrix);
+ this.matrixWorld.copy(source.matrixWorld);
+ this.matrixAutoUpdate = source.matrixAutoUpdate;
+ this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
+ this.layers.mask = source.layers.mask;
+ this.visible = source.visible;
+ this.castShadow = source.castShadow;
+ this.receiveShadow = source.receiveShadow;
+ this.frustumCulled = source.frustumCulled;
+ this.renderOrder = source.renderOrder;
+ this.userData = JSON.parse(JSON.stringify(source.userData));
+
+ if (recursive === true) {
+ for (let i = 0; i < source.children.length; i++) {
+ const child = source.children[i];
+ this.add(child.clone());
+ }
+ }
+
+ return this;
+ }
+
+ }
+
+ Object3D.DefaultUp = new Vector3(0, 1, 0);
+ Object3D.DefaultMatrixAutoUpdate = true;
+ Object3D.prototype.isObject3D = true;
+
+ const _v0$1 = /*@__PURE__*/new Vector3();
+
+ const _v1$3 = /*@__PURE__*/new Vector3();
+
+ const _v2$2 = /*@__PURE__*/new Vector3();
+
+ const _v3$1 = /*@__PURE__*/new Vector3();
+
+ const _vab = /*@__PURE__*/new Vector3();
+
+ const _vac = /*@__PURE__*/new Vector3();
+
+ const _vbc = /*@__PURE__*/new Vector3();
+
+ const _vap = /*@__PURE__*/new Vector3();
+
+ const _vbp = /*@__PURE__*/new Vector3();
+
+ const _vcp = /*@__PURE__*/new Vector3();
+
+ class Triangle {
+ constructor(a = new Vector3(), b = new Vector3(), c = new Vector3()) {
+ this.a = a;
+ this.b = b;
+ this.c = c;
+ }
+
+ static getNormal(a, b, c, target) {
+ target.subVectors(c, b);
+
+ _v0$1.subVectors(a, b);
+
+ target.cross(_v0$1);
+ const targetLengthSq = target.lengthSq();
+
+ if (targetLengthSq > 0) {
+ return target.multiplyScalar(1 / Math.sqrt(targetLengthSq));
+ }
+
+ return target.set(0, 0, 0);
+ } // static/instance method to calculate barycentric coordinates
+ // based on: http://www.blackpawn.com/texts/pointinpoly/default.html
+
+
+ static getBarycoord(point, a, b, c, target) {
+ _v0$1.subVectors(c, a);
+
+ _v1$3.subVectors(b, a);
+
+ _v2$2.subVectors(point, a);
+
+ const dot00 = _v0$1.dot(_v0$1);
+
+ const dot01 = _v0$1.dot(_v1$3);
+
+ const dot02 = _v0$1.dot(_v2$2);
+
+ const dot11 = _v1$3.dot(_v1$3);
+
+ const dot12 = _v1$3.dot(_v2$2);
+
+ const denom = dot00 * dot11 - dot01 * dot01; // collinear or singular triangle
+
+ if (denom === 0) {
+ // arbitrary location outside of triangle?
+ // not sure if this is the best idea, maybe should be returning undefined
+ return target.set(-2, -1, -1);
+ }
+
+ const invDenom = 1 / denom;
+ const u = (dot11 * dot02 - dot01 * dot12) * invDenom;
+ const v = (dot00 * dot12 - dot01 * dot02) * invDenom; // barycentric coordinates must always sum to 1
+
+ return target.set(1 - u - v, v, u);
+ }
+
+ static containsPoint(point, a, b, c) {
+ this.getBarycoord(point, a, b, c, _v3$1);
+ return _v3$1.x >= 0 && _v3$1.y >= 0 && _v3$1.x + _v3$1.y <= 1;
+ }
+
+ static getUV(point, p1, p2, p3, uv1, uv2, uv3, target) {
+ this.getBarycoord(point, p1, p2, p3, _v3$1);
+ target.set(0, 0);
+ target.addScaledVector(uv1, _v3$1.x);
+ target.addScaledVector(uv2, _v3$1.y);
+ target.addScaledVector(uv3, _v3$1.z);
+ return target;
+ }
+
+ static isFrontFacing(a, b, c, direction) {
+ _v0$1.subVectors(c, b);
+
+ _v1$3.subVectors(a, b); // strictly front facing
+
+
+ return _v0$1.cross(_v1$3).dot(direction) < 0 ? true : false;
+ }
+
+ set(a, b, c) {
+ this.a.copy(a);
+ this.b.copy(b);
+ this.c.copy(c);
+ return this;
+ }
+
+ setFromPointsAndIndices(points, i0, i1, i2) {
+ this.a.copy(points[i0]);
+ this.b.copy(points[i1]);
+ this.c.copy(points[i2]);
+ return this;
+ }
+
+ setFromAttributeAndIndices(attribute, i0, i1, i2) {
+ this.a.fromBufferAttribute(attribute, i0);
+ this.b.fromBufferAttribute(attribute, i1);
+ this.c.fromBufferAttribute(attribute, i2);
+ return this;
+ }
+
+ clone() {
+ return new this.constructor().copy(this);
+ }
+
+ copy(triangle) {
+ this.a.copy(triangle.a);
+ this.b.copy(triangle.b);
+ this.c.copy(triangle.c);
+ return this;
+ }
+
+ getArea() {
+ _v0$1.subVectors(this.c, this.b);
+
+ _v1$3.subVectors(this.a, this.b);
+
+ return _v0$1.cross(_v1$3).length() * 0.5;
+ }
+
+ getMidpoint(target) {
+ return target.addVectors(this.a, this.b).add(this.c).multiplyScalar(1 / 3);
+ }
+
+ getNormal(target) {
+ return Triangle.getNormal(this.a, this.b, this.c, target);
+ }
+
+ getPlane(target) {
+ return target.setFromCoplanarPoints(this.a, this.b, this.c);
+ }
+
+ getBarycoord(point, target) {
+ return Triangle.getBarycoord(point, this.a, this.b, this.c, target);
+ }
+
+ getUV(point, uv1, uv2, uv3, target) {
+ return Triangle.getUV(point, this.a, this.b, this.c, uv1, uv2, uv3, target);
+ }
+
+ containsPoint(point) {
+ return Triangle.containsPoint(point, this.a, this.b, this.c);
+ }
+
+ isFrontFacing(direction) {
+ return Triangle.isFrontFacing(this.a, this.b, this.c, direction);
+ }
+
+ intersectsBox(box) {
+ return box.intersectsTriangle(this);
+ }
+
+ closestPointToPoint(p, target) {
+ const a = this.a,
+ b = this.b,
+ c = this.c;
+ let v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson,
+ // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
+ // under the accompanying license; see chapter 5.1.5 for detailed explanation.
+ // basically, we're distinguishing which of the voronoi regions of the triangle
+ // the point lies in with the minimum amount of redundant computation.
+
+ _vab.subVectors(b, a);
+
+ _vac.subVectors(c, a);
+
+ _vap.subVectors(p, a);
+
+ const d1 = _vab.dot(_vap);
+
+ const d2 = _vac.dot(_vap);
+
+ if (d1 <= 0 && d2 <= 0) {
+ // vertex region of A; barycentric coords (1, 0, 0)
+ return target.copy(a);
+ }
+
+ _vbp.subVectors(p, b);
+
+ const d3 = _vab.dot(_vbp);
+
+ const d4 = _vac.dot(_vbp);
+
+ if (d3 >= 0 && d4 <= d3) {
+ // vertex region of B; barycentric coords (0, 1, 0)
+ return target.copy(b);
+ }
+
+ const vc = d1 * d4 - d3 * d2;
+
+ if (vc <= 0 && d1 >= 0 && d3 <= 0) {
+ v = d1 / (d1 - d3); // edge region of AB; barycentric coords (1-v, v, 0)
+
+ return target.copy(a).addScaledVector(_vab, v);
+ }
+
+ _vcp.subVectors(p, c);
+
+ const d5 = _vab.dot(_vcp);
+
+ const d6 = _vac.dot(_vcp);
+
+ if (d6 >= 0 && d5 <= d6) {
+ // vertex region of C; barycentric coords (0, 0, 1)
+ return target.copy(c);
+ }
+
+ const vb = d5 * d2 - d1 * d6;
+
+ if (vb <= 0 && d2 >= 0 && d6 <= 0) {
+ w = d2 / (d2 - d6); // edge region of AC; barycentric coords (1-w, 0, w)
+
+ return target.copy(a).addScaledVector(_vac, w);
+ }
+
+ const va = d3 * d6 - d5 * d4;
+
+ if (va <= 0 && d4 - d3 >= 0 && d5 - d6 >= 0) {
+ _vbc.subVectors(c, b);
+
+ w = (d4 - d3) / (d4 - d3 + (d5 - d6)); // edge region of BC; barycentric coords (0, 1-w, w)
+
+ return target.copy(b).addScaledVector(_vbc, w); // edge region of BC
+ } // face region
+
+
+ const denom = 1 / (va + vb + vc); // u = va * denom
+
+ v = vb * denom;
+ w = vc * denom;
+ return target.copy(a).addScaledVector(_vab, v).addScaledVector(_vac, w);
+ }
+
+ equals(triangle) {
+ return triangle.a.equals(this.a) && triangle.b.equals(this.b) && triangle.c.equals(this.c);
+ }
+
+ }
+
+ let materialId = 0;
+
+ class Material extends EventDispatcher {
+ constructor() {
+ super();
+ Object.defineProperty(this, 'id', {
+ value: materialId++
+ });
+ this.uuid = generateUUID();
+ this.name = '';
+ this.type = 'Material';
+ this.fog = true;
+ this.blending = NormalBlending;
+ this.side = FrontSide;
+ this.vertexColors = false;
+ this.opacity = 1;
+ this.format = RGBAFormat;
+ this.transparent = false;
+ this.blendSrc = SrcAlphaFactor;
+ this.blendDst = OneMinusSrcAlphaFactor;
+ this.blendEquation = AddEquation;
+ this.blendSrcAlpha = null;
+ this.blendDstAlpha = null;
+ this.blendEquationAlpha = null;
+ this.depthFunc = LessEqualDepth;
+ this.depthTest = true;
+ this.depthWrite = true;
+ this.stencilWriteMask = 0xff;
+ this.stencilFunc = AlwaysStencilFunc;
+ this.stencilRef = 0;
+ this.stencilFuncMask = 0xff;
+ this.stencilFail = KeepStencilOp;
+ this.stencilZFail = KeepStencilOp;
+ this.stencilZPass = KeepStencilOp;
+ this.stencilWrite = false;
+ this.clippingPlanes = null;
+ this.clipIntersection = false;
+ this.clipShadows = false;
+ this.shadowSide = null;
+ this.colorWrite = true;
+ this.precision = null; // override the renderer's default precision for this material
+
+ this.polygonOffset = false;
+ this.polygonOffsetFactor = 0;
+ this.polygonOffsetUnits = 0;
+ this.dithering = false;
+ this.alphaToCoverage = false;
+ this.premultipliedAlpha = false;
+ this.visible = true;
+ this.toneMapped = true;
+ this.userData = {};
+ this.version = 0;
+ this._alphaTest = 0;
+ }
+
+ get alphaTest() {
+ return this._alphaTest;
+ }
+
+ set alphaTest(value) {
+ if (this._alphaTest > 0 !== value > 0) {
+ this.version++;
+ }
+
+ this._alphaTest = value;
+ }
+
+ onBuild() {}
+
+ onBeforeRender() {}
+
+ onBeforeCompile() {}
+
+ customProgramCacheKey() {
+ return this.onBeforeCompile.toString();
+ }
+
+ setValues(values) {
+ if (values === undefined) return;
+
+ for (const key in values) {
+ const newValue = values[key];
+
+ if (newValue === undefined) {
+ console.warn('THREE.Material: \'' + key + '\' parameter is undefined.');
+ continue;
+ } // for backward compatability if shading is set in the constructor
+
+
+ if (key === 'shading') {
+ console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
+ this.flatShading = newValue === FlatShading ? true : false;
+ continue;
+ }
+
+ const currentValue = this[key];
+
+ if (currentValue === undefined) {
+ console.warn('THREE.' + this.type + ': \'' + key + '\' is not a property of this material.');
+ continue;
+ }
+
+ if (currentValue && currentValue.isColor) {
+ currentValue.set(newValue);
+ } else if (currentValue && currentValue.isVector3 && newValue && newValue.isVector3) {
+ currentValue.copy(newValue);
+ } else {
+ this[key] = newValue;
+ }
+ }
+ }
+
+ toJSON(meta) {
+ const isRoot = meta === undefined || typeof meta === 'string';
+
+ if (isRoot) {
+ meta = {
+ textures: {},
+ images: {}
+ };
+ }
+
+ const data = {
+ metadata: {
+ version: 4.5,
+ type: 'Material',
+ generator: 'Material.toJSON'
+ }
+ }; // standard Material serialization
+
+ data.uuid = this.uuid;
+ data.type = this.type;
+ if (this.name !== '') data.name = this.name;
+ if (this.color && this.color.isColor) data.color = this.color.getHex();
+ if (this.roughness !== undefined) data.roughness = this.roughness;
+ if (this.metalness !== undefined) data.metalness = this.metalness;
+ if (this.sheen !== undefined) data.sheen = this.sheen;
+ if (this.sheenColor && this.sheenColor.isColor) data.sheenColor = this.sheenColor.getHex();
+ if (this.sheenRoughness !== undefined) data.sheenRoughness = this.sheenRoughness;
+ if (this.emissive && this.emissive.isColor) data.emissive = this.emissive.getHex();
+ if (this.emissiveIntensity && this.emissiveIntensity !== 1) data.emissiveIntensity = this.emissiveIntensity;
+ if (this.specular && this.specular.isColor) data.specular = this.specular.getHex();
+ if (this.specularIntensity !== undefined) data.specularIntensity = this.specularIntensity;
+ if (this.specularColor && this.specularColor.isColor) data.specularColor = this.specularColor.getHex();
+ if (this.shininess !== undefined) data.shininess = this.shininess;
+ if (this.clearcoat !== undefined) data.clearcoat = this.clearcoat;
+ if (this.clearcoatRoughness !== undefined) data.clearcoatRoughness = this.clearcoatRoughness;
+
+ if (this.clearcoatMap && this.clearcoatMap.isTexture) {
+ data.clearcoatMap = this.clearcoatMap.toJSON(meta).uuid;
+ }
+
+ if (this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture) {
+ data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON(meta).uuid;
+ }
+
+ if (this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture) {
+ data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON(meta).uuid;
+ data.clearcoatNormalScale = this.clearcoatNormalScale.toArray();
+ }
+
+ if (this.map && this.map.isTexture) data.map = this.map.toJSON(meta).uuid;
+ if (this.matcap && this.matcap.isTexture) data.matcap = this.matcap.toJSON(meta).uuid;
+ if (this.alphaMap && this.alphaMap.isTexture) data.alphaMap = this.alphaMap.toJSON(meta).uuid;
+
+ if (this.lightMap && this.lightMap.isTexture) {
+ data.lightMap = this.lightMap.toJSON(meta).uuid;
+ data.lightMapIntensity = this.lightMapIntensity;
+ }
+
+ if (this.aoMap && this.aoMap.isTexture) {
+ data.aoMap = this.aoMap.toJSON(meta).uuid;
+ data.aoMapIntensity = this.aoMapIntensity;
+ }
+
+ if (this.bumpMap && this.bumpMap.isTexture) {
+ data.bumpMap = this.bumpMap.toJSON(meta).uuid;
+ data.bumpScale = this.bumpScale;
+ }
+
+ if (this.normalMap && this.normalMap.isTexture) {
+ data.normalMap = this.normalMap.toJSON(meta).uuid;
+ data.normalMapType = this.normalMapType;
+ data.normalScale = this.normalScale.toArray();
+ }
+
+ if (this.displacementMap && this.displacementMap.isTexture) {
+ data.displacementMap = this.displacementMap.toJSON(meta).uuid;
+ data.displacementScale = this.displacementScale;
+ data.displacementBias = this.displacementBias;
+ }
+
+ if (this.roughnessMap && this.roughnessMap.isTexture) data.roughnessMap = this.roughnessMap.toJSON(meta).uuid;
+ if (this.metalnessMap && this.metalnessMap.isTexture) data.metalnessMap = this.metalnessMap.toJSON(meta).uuid;
+ if (this.emissiveMap && this.emissiveMap.isTexture) data.emissiveMap = this.emissiveMap.toJSON(meta).uuid;
+ if (this.specularMap && this.specularMap.isTexture) data.specularMap = this.specularMap.toJSON(meta).uuid;
+ if (this.specularIntensityMap && this.specularIntensityMap.isTexture) data.specularIntensityMap = this.specularIntensityMap.toJSON(meta).uuid;
+ if (this.specularColorMap && this.specularColorMap.isTexture) data.specularColorMap = this.specularColorMap.toJSON(meta).uuid;
+
+ if (this.envMap && this.envMap.isTexture) {
+ data.envMap = this.envMap.toJSON(meta).uuid;
+ if (this.combine !== undefined) data.combine = this.combine;
+ }
+
+ if (this.envMapIntensity !== undefined) data.envMapIntensity = this.envMapIntensity;
+ if (this.reflectivity !== undefined) data.reflectivity = this.reflectivity;
+ if (this.refractionRatio !== undefined) data.refractionRatio = this.refractionRatio;
+
+ if (this.gradientMap && this.gradientMap.isTexture) {
+ data.gradientMap = this.gradientMap.toJSON(meta).uuid;
+ }
+
+ if (this.transmission !== undefined) data.transmission = this.transmission;
+ if (this.transmissionMap && this.transmissionMap.isTexture) data.transmissionMap = this.transmissionMap.toJSON(meta).uuid;
+ if (this.thickness !== undefined) data.thickness = this.thickness;
+ if (this.thicknessMap && this.thicknessMap.isTexture) data.thicknessMap = this.thicknessMap.toJSON(meta).uuid;
+ if (this.attenuationDistance !== undefined) data.attenuationDistance = this.attenuationDistance;
+ if (this.attenuationColor !== undefined) data.attenuationColor = this.attenuationColor.getHex();
+ if (this.size !== undefined) data.size = this.size;
+ if (this.shadowSide !== null) data.shadowSide = this.shadowSide;
+ if (this.sizeAttenuation !== undefined) data.sizeAttenuation = this.sizeAttenuation;
+ if (this.blending !== NormalBlending) data.blending = this.blending;
+ if (this.side !== FrontSide) data.side = this.side;
+ if (this.vertexColors) data.vertexColors = true;
+ if (this.opacity < 1) data.opacity = this.opacity;
+ if (this.format !== RGBAFormat) data.format = this.format;
+ if (this.transparent === true) data.transparent = this.transparent;
+ data.depthFunc = this.depthFunc;
+ data.depthTest = this.depthTest;
+ data.depthWrite = this.depthWrite;
+ data.colorWrite = this.colorWrite;
+ data.stencilWrite = this.stencilWrite;
+ data.stencilWriteMask = this.stencilWriteMask;
+ data.stencilFunc = this.stencilFunc;
+ data.stencilRef = this.stencilRef;
+ data.stencilFuncMask = this.stencilFuncMask;
+ data.stencilFail = this.stencilFail;
+ data.stencilZFail = this.stencilZFail;
+ data.stencilZPass = this.stencilZPass; // rotation (SpriteMaterial)
+
+ if (this.rotation && this.rotation !== 0) data.rotation = this.rotation;
+ if (this.polygonOffset === true) data.polygonOffset = true;
+ if (this.polygonOffsetFactor !== 0) data.polygonOffsetFactor = this.polygonOffsetFactor;
+ if (this.polygonOffsetUnits !== 0) data.polygonOffsetUnits = this.polygonOffsetUnits;
+ if (this.linewidth && this.linewidth !== 1) data.linewidth = this.linewidth;
+ if (this.dashSize !== undefined) data.dashSize = this.dashSize;
+ if (this.gapSize !== undefined) data.gapSize = this.gapSize;
+ if (this.scale !== undefined) data.scale = this.scale;
+ if (this.dithering === true) data.dithering = true;
+ if (this.alphaTest > 0) data.alphaTest = this.alphaTest;
+ if (this.alphaToCoverage === true) data.alphaToCoverage = this.alphaToCoverage;
+ if (this.premultipliedAlpha === true) data.premultipliedAlpha = this.premultipliedAlpha;
+ if (this.wireframe === true) data.wireframe = this.wireframe;
+ if (this.wireframeLinewidth > 1) data.wireframeLinewidth = this.wireframeLinewidth;
+ if (this.wireframeLinecap !== 'round') data.wireframeLinecap = this.wireframeLinecap;
+ if (this.wireframeLinejoin !== 'round') data.wireframeLinejoin = this.wireframeLinejoin;
+ if (this.flatShading === true) data.flatShading = this.flatShading;
+ if (this.visible === false) data.visible = false;
+ if (this.toneMapped === false) data.toneMapped = false;
+ if (JSON.stringify(this.userData) !== '{}') data.userData = this.userData; // TODO: Copied from Object3D.toJSON
+
+ function extractFromCache(cache) {
+ const values = [];
+
+ for (const key in cache) {
+ const data = cache[key];
+ delete data.metadata;
+ values.push(data);
+ }
+
+ return values;
+ }
+
+ if (isRoot) {
+ const textures = extractFromCache(meta.textures);
+ const images = extractFromCache(meta.images);
+ if (textures.length > 0) data.textures = textures;
+ if (images.length > 0) data.images = images;
+ }
+
+ return data;
+ }
+
+ clone() {
+ return new this.constructor().copy(this);
+ }
+
+ copy(source) {
+ this.name = source.name;
+ this.fog = source.fog;
+ this.blending = source.blending;
+ this.side = source.side;
+ this.vertexColors = source.vertexColors;
+ this.opacity = source.opacity;
+ this.format = source.format;
+ this.transparent = source.transparent;
+ this.blendSrc = source.blendSrc;
+ this.blendDst = source.blendDst;
+ this.blendEquation = source.blendEquation;
+ this.blendSrcAlpha = source.blendSrcAlpha;
+ this.blendDstAlpha = source.blendDstAlpha;
+ this.blendEquationAlpha = source.blendEquationAlpha;
+ this.depthFunc = source.depthFunc;
+ this.depthTest = source.depthTest;
+ this.depthWrite = source.depthWrite;
+ this.stencilWriteMask = source.stencilWriteMask;
+ this.stencilFunc = source.stencilFunc;
+ this.stencilRef = source.stencilRef;
+ this.stencilFuncMask = source.stencilFuncMask;
+ this.stencilFail = source.stencilFail;
+ this.stencilZFail = source.stencilZFail;
+ this.stencilZPass = source.stencilZPass;
+ this.stencilWrite = source.stencilWrite;
+ const srcPlanes = source.clippingPlanes;
+ let dstPlanes = null;
+
+ if (srcPlanes !== null) {
+ const n = srcPlanes.length;
+ dstPlanes = new Array(n);
+
+ for (let i = 0; i !== n; ++i) {
+ dstPlanes[i] = srcPlanes[i].clone();
+ }
+ }
+
+ this.clippingPlanes = dstPlanes;
+ this.clipIntersection = source.clipIntersection;
+ this.clipShadows = source.clipShadows;
+ this.shadowSide = source.shadowSide;
+ this.colorWrite = source.colorWrite;
+ this.precision = source.precision;
+ this.polygonOffset = source.polygonOffset;
+ this.polygonOffsetFactor = source.polygonOffsetFactor;
+ this.polygonOffsetUnits = source.polygonOffsetUnits;
+ this.dithering = source.dithering;
+ this.alphaTest = source.alphaTest;
+ this.alphaToCoverage = source.alphaToCoverage;
+ this.premultipliedAlpha = source.premultipliedAlpha;
+ this.visible = source.visible;
+ this.toneMapped = source.toneMapped;
+ this.userData = JSON.parse(JSON.stringify(source.userData));
+ return this;
+ }
+
+ dispose() {
+ this.dispatchEvent({
+ type: 'dispose'
+ });
+ }
+
+ set needsUpdate(value) {
+ if (value === true) this.version++;
+ }
+
+ }
+
+ Material.prototype.isMaterial = true;
+
+ const _colorKeywords = {
+ 'aliceblue': 0xF0F8FF,
+ 'antiquewhite': 0xFAEBD7,
+ 'aqua': 0x00FFFF,
+ 'aquamarine': 0x7FFFD4,
+ 'azure': 0xF0FFFF,
+ 'beige': 0xF5F5DC,
+ 'bisque': 0xFFE4C4,
+ 'black': 0x000000,
+ 'blanchedalmond': 0xFFEBCD,
+ 'blue': 0x0000FF,
+ 'blueviolet': 0x8A2BE2,
+ 'brown': 0xA52A2A,
+ 'burlywood': 0xDEB887,
+ 'cadetblue': 0x5F9EA0,
+ 'chartreuse': 0x7FFF00,
+ 'chocolate': 0xD2691E,
+ 'coral': 0xFF7F50,
+ 'cornflowerblue': 0x6495ED,
+ 'cornsilk': 0xFFF8DC,
+ 'crimson': 0xDC143C,
+ 'cyan': 0x00FFFF,
+ 'darkblue': 0x00008B,
+ 'darkcyan': 0x008B8B,
+ 'darkgoldenrod': 0xB8860B,
+ 'darkgray': 0xA9A9A9,
+ 'darkgreen': 0x006400,
+ 'darkgrey': 0xA9A9A9,
+ 'darkkhaki': 0xBDB76B,
+ 'darkmagenta': 0x8B008B,
+ 'darkolivegreen': 0x556B2F,
+ 'darkorange': 0xFF8C00,
+ 'darkorchid': 0x9932CC,
+ 'darkred': 0x8B0000,
+ 'darksalmon': 0xE9967A,
+ 'darkseagreen': 0x8FBC8F,
+ 'darkslateblue': 0x483D8B,
+ 'darkslategray': 0x2F4F4F,
+ 'darkslategrey': 0x2F4F4F,
+ 'darkturquoise': 0x00CED1,
+ 'darkviolet': 0x9400D3,
+ 'deeppink': 0xFF1493,
+ 'deepskyblue': 0x00BFFF,
+ 'dimgray': 0x696969,
+ 'dimgrey': 0x696969,
+ 'dodgerblue': 0x1E90FF,
+ 'firebrick': 0xB22222,
+ 'floralwhite': 0xFFFAF0,
+ 'forestgreen': 0x228B22,
+ 'fuchsia': 0xFF00FF,
+ 'gainsboro': 0xDCDCDC,
+ 'ghostwhite': 0xF8F8FF,
+ 'gold': 0xFFD700,
+ 'goldenrod': 0xDAA520,
+ 'gray': 0x808080,
+ 'green': 0x008000,
+ 'greenyellow': 0xADFF2F,
+ 'grey': 0x808080,
+ 'honeydew': 0xF0FFF0,
+ 'hotpink': 0xFF69B4,
+ 'indianred': 0xCD5C5C,
+ 'indigo': 0x4B0082,
+ 'ivory': 0xFFFFF0,
+ 'khaki': 0xF0E68C,
+ 'lavender': 0xE6E6FA,
+ 'lavenderblush': 0xFFF0F5,
+ 'lawngreen': 0x7CFC00,
+ 'lemonchiffon': 0xFFFACD,
+ 'lightblue': 0xADD8E6,
+ 'lightcoral': 0xF08080,
+ 'lightcyan': 0xE0FFFF,
+ 'lightgoldenrodyellow': 0xFAFAD2,
+ 'lightgray': 0xD3D3D3,
+ 'lightgreen': 0x90EE90,
+ 'lightgrey': 0xD3D3D3,
+ 'lightpink': 0xFFB6C1,
+ 'lightsalmon': 0xFFA07A,
+ 'lightseagreen': 0x20B2AA,
+ 'lightskyblue': 0x87CEFA,
+ 'lightslategray': 0x778899,
+ 'lightslategrey': 0x778899,
+ 'lightsteelblue': 0xB0C4DE,
+ 'lightyellow': 0xFFFFE0,
+ 'lime': 0x00FF00,
+ 'limegreen': 0x32CD32,
+ 'linen': 0xFAF0E6,
+ 'magenta': 0xFF00FF,
+ 'maroon': 0x800000,
+ 'mediumaquamarine': 0x66CDAA,
+ 'mediumblue': 0x0000CD,
+ 'mediumorchid': 0xBA55D3,
+ 'mediumpurple': 0x9370DB,
+ 'mediumseagreen': 0x3CB371,
+ 'mediumslateblue': 0x7B68EE,
+ 'mediumspringgreen': 0x00FA9A,
+ 'mediumturquoise': 0x48D1CC,
+ 'mediumvioletred': 0xC71585,
+ 'midnightblue': 0x191970,
+ 'mintcream': 0xF5FFFA,
+ 'mistyrose': 0xFFE4E1,
+ 'moccasin': 0xFFE4B5,
+ 'navajowhite': 0xFFDEAD,
+ 'navy': 0x000080,
+ 'oldlace': 0xFDF5E6,
+ 'olive': 0x808000,
+ 'olivedrab': 0x6B8E23,
+ 'orange': 0xFFA500,
+ 'orangered': 0xFF4500,
+ 'orchid': 0xDA70D6,
+ 'palegoldenrod': 0xEEE8AA,
+ 'palegreen': 0x98FB98,
+ 'paleturquoise': 0xAFEEEE,
+ 'palevioletred': 0xDB7093,
+ 'papayawhip': 0xFFEFD5,
+ 'peachpuff': 0xFFDAB9,
+ 'peru': 0xCD853F,
+ 'pink': 0xFFC0CB,
+ 'plum': 0xDDA0DD,
+ 'powderblue': 0xB0E0E6,
+ 'purple': 0x800080,
+ 'rebeccapurple': 0x663399,
+ 'red': 0xFF0000,
+ 'rosybrown': 0xBC8F8F,
+ 'royalblue': 0x4169E1,
+ 'saddlebrown': 0x8B4513,
+ 'salmon': 0xFA8072,
+ 'sandybrown': 0xF4A460,
+ 'seagreen': 0x2E8B57,
+ 'seashell': 0xFFF5EE,
+ 'sienna': 0xA0522D,
+ 'silver': 0xC0C0C0,
+ 'skyblue': 0x87CEEB,
+ 'slateblue': 0x6A5ACD,
+ 'slategray': 0x708090,
+ 'slategrey': 0x708090,
+ 'snow': 0xFFFAFA,
+ 'springgreen': 0x00FF7F,
+ 'steelblue': 0x4682B4,
+ 'tan': 0xD2B48C,
+ 'teal': 0x008080,
+ 'thistle': 0xD8BFD8,
+ 'tomato': 0xFF6347,
+ 'turquoise': 0x40E0D0,
+ 'violet': 0xEE82EE,
+ 'wheat': 0xF5DEB3,
+ 'white': 0xFFFFFF,
+ 'whitesmoke': 0xF5F5F5,
+ 'yellow': 0xFFFF00,
+ 'yellowgreen': 0x9ACD32
+ };
+ const _hslA = {
+ h: 0,
+ s: 0,
+ l: 0
+ };
+ const _hslB = {
+ h: 0,
+ s: 0,
+ l: 0
+ };
+
+ function hue2rgb(p, q, t) {
+ if (t < 0) t += 1;
+ if (t > 1) t -= 1;
+ if (t < 1 / 6) return p + (q - p) * 6 * t;
+ if (t < 1 / 2) return q;
+ if (t < 2 / 3) return p + (q - p) * 6 * (2 / 3 - t);
+ return p;
+ }
+
+ function SRGBToLinear(c) {
+ return c < 0.04045 ? c * 0.0773993808 : Math.pow(c * 0.9478672986 + 0.0521327014, 2.4);
+ }
+
+ function LinearToSRGB(c) {
+ return c < 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 0.41666) - 0.055;
+ }
+
+ class Color {
+ constructor(r, g, b) {
+ if (g === undefined && b === undefined) {
+ // r is THREE.Color, hex or string
+ return this.set(r);
+ }
+
+ return this.setRGB(r, g, b);
+ }
+
+ set(value) {
+ if (value && value.isColor) {
+ this.copy(value);
+ } else if (typeof value === 'number') {
+ this.setHex(value);
+ } else if (typeof value === 'string') {
+ this.setStyle(value);
+ }
+
+ return this;
+ }
+
+ setScalar(scalar) {
+ this.r = scalar;
+ this.g = scalar;
+ this.b = scalar;
+ return this;
+ }
+
+ setHex(hex) {
+ hex = Math.floor(hex);
+ this.r = (hex >> 16 & 255) / 255;
+ this.g = (hex >> 8 & 255) / 255;
+ this.b = (hex & 255) / 255;
+ return this;
+ }
+
+ setRGB(r, g, b) {
+ this.r = r;
+ this.g = g;
+ this.b = b;
+ return this;
+ }
+
+ setHSL(h, s, l) {
+ // h,s,l ranges are in 0.0 - 1.0
+ h = euclideanModulo(h, 1);
+ s = clamp(s, 0, 1);
+ l = clamp(l, 0, 1);
+
+ if (s === 0) {
+ this.r = this.g = this.b = l;
+ } else {
+ const p = l <= 0.5 ? l * (1 + s) : l + s - l * s;
+ const q = 2 * l - p;
+ this.r = hue2rgb(q, p, h + 1 / 3);
+ this.g = hue2rgb(q, p, h);
+ this.b = hue2rgb(q, p, h - 1 / 3);
+ }
+
+ return this;
+ }
+
+ setStyle(style) {
+ function handleAlpha(string) {
+ if (string === undefined) return;
+
+ if (parseFloat(string) < 1) {
+ console.warn('THREE.Color: Alpha component of ' + style + ' will be ignored.');
+ }
+ }
+
+ let m;
+
+ if (m = /^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec(style)) {
+ // rgb / hsl
+ let color;
+ const name = m[1];
+ const components = m[2];
+
+ switch (name) {
+ case 'rgb':
+ case 'rgba':
+ if (color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
+ // rgb(255,0,0) rgba(255,0,0,0.5)
+ this.r = Math.min(255, parseInt(color[1], 10)) / 255;
+ this.g = Math.min(255, parseInt(color[2], 10)) / 255;
+ this.b = Math.min(255, parseInt(color[3], 10)) / 255;
+ handleAlpha(color[4]);
+ return this;
+ }
+
+ if (color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
+ // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
+ this.r = Math.min(100, parseInt(color[1], 10)) / 100;
+ this.g = Math.min(100, parseInt(color[2], 10)) / 100;
+ this.b = Math.min(100, parseInt(color[3], 10)) / 100;
+ handleAlpha(color[4]);
+ return this;
+ }
+
+ break;
+
+ case 'hsl':
+ case 'hsla':
+ if (color = /^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
+ // hsl(120,50%,50%) hsla(120,50%,50%,0.5)
+ const h = parseFloat(color[1]) / 360;
+ const s = parseInt(color[2], 10) / 100;
+ const l = parseInt(color[3], 10) / 100;
+ handleAlpha(color[4]);
+ return this.setHSL(h, s, l);
+ }
+
+ break;
+ }
+ } else if (m = /^\#([A-Fa-f\d]+)$/.exec(style)) {
+ // hex color
+ const hex = m[1];
+ const size = hex.length;
+
+ if (size === 3) {
+ // #ff0
+ this.r = parseInt(hex.charAt(0) + hex.charAt(0), 16) / 255;
+ this.g = parseInt(hex.charAt(1) + hex.charAt(1), 16) / 255;
+ this.b = parseInt(hex.charAt(2) + hex.charAt(2), 16) / 255;
+ return this;
+ } else if (size === 6) {
+ // #ff0000
+ this.r = parseInt(hex.charAt(0) + hex.charAt(1), 16) / 255;
+ this.g = parseInt(hex.charAt(2) + hex.charAt(3), 16) / 255;
+ this.b = parseInt(hex.charAt(4) + hex.charAt(5), 16) / 255;
+ return this;
+ }
+ }
+
+ if (style && style.length > 0) {
+ return this.setColorName(style);
+ }
+
+ return this;
+ }
+
+ setColorName(style) {
+ // color keywords
+ const hex = _colorKeywords[style.toLowerCase()];
+
+ if (hex !== undefined) {
+ // red
+ this.setHex(hex);
+ } else {
+ // unknown color
+ console.warn('THREE.Color: Unknown color ' + style);
+ }
+
+ return this;
+ }
+
+ clone() {
+ return new this.constructor(this.r, this.g, this.b);
+ }
+
+ copy(color) {
+ this.r = color.r;
+ this.g = color.g;
+ this.b = color.b;
+ return this;
+ }
+
+ copySRGBToLinear(color) {
+ this.r = SRGBToLinear(color.r);
+ this.g = SRGBToLinear(color.g);
+ this.b = SRGBToLinear(color.b);
+ return this;
+ }
+
+ copyLinearToSRGB(color) {
+ this.r = LinearToSRGB(color.r);
+ this.g = LinearToSRGB(color.g);
+ this.b = LinearToSRGB(color.b);
+ return this;
+ }
+
+ convertSRGBToLinear() {
+ this.copySRGBToLinear(this);
+ return this;
+ }
+
+ convertLinearToSRGB() {
+ this.copyLinearToSRGB(this);
+ return this;
+ }
+
+ getHex() {
+ return this.r * 255 << 16 ^ this.g * 255 << 8 ^ this.b * 255 << 0;
+ }
+
+ getHexString() {
+ return ('000000' + this.getHex().toString(16)).slice(-6);
+ }
+
+ getHSL(target) {
+ // h,s,l ranges are in 0.0 - 1.0
+ const r = this.r,
+ g = this.g,
+ b = this.b;
+ const max = Math.max(r, g, b);
+ const min = Math.min(r, g, b);
+ let hue, saturation;
+ const lightness = (min + max) / 2.0;
+
+ if (min === max) {
+ hue = 0;
+ saturation = 0;
+ } else {
+ const delta = max - min;
+ saturation = lightness <= 0.5 ? delta / (max + min) : delta / (2 - max - min);
+
+ switch (max) {
+ case r:
+ hue = (g - b) / delta + (g < b ? 6 : 0);
+ break;
+
+ case g:
+ hue = (b - r) / delta + 2;
+ break;
+
+ case b:
+ hue = (r - g) / delta + 4;
+ break;
+ }
+
+ hue /= 6;
+ }
+
+ target.h = hue;
+ target.s = saturation;
+ target.l = lightness;
+ return target;
+ }
+
+ getStyle() {
+ return 'rgb(' + (this.r * 255 | 0) + ',' + (this.g * 255 | 0) + ',' + (this.b * 255 | 0) + ')';
+ }
+
+ offsetHSL(h, s, l) {
+ this.getHSL(_hslA);
+ _hslA.h += h;
+ _hslA.s += s;
+ _hslA.l += l;
+ this.setHSL(_hslA.h, _hslA.s, _hslA.l);
+ return this;
+ }
+
+ add(color) {
+ this.r += color.r;
+ this.g += color.g;
+ this.b += color.b;
+ return this;
+ }
+
+ addColors(color1, color2) {
+ this.r = color1.r + color2.r;
+ this.g = color1.g + color2.g;
+ this.b = color1.b + color2.b;
+ return this;
+ }
+
+ addScalar(s) {
+ this.r += s;
+ this.g += s;
+ this.b += s;
+ return this;
+ }
+
+ sub(color) {
+ this.r = Math.max(0, this.r - color.r);
+ this.g = Math.max(0, this.g - color.g);
+ this.b = Math.max(0, this.b - color.b);
+ return this;
+ }
+
+ multiply(color) {
+ this.r *= color.r;
+ this.g *= color.g;
+ this.b *= color.b;
+ return this;
+ }
+
+ multiplyScalar(s) {
+ this.r *= s;
+ this.g *= s;
+ this.b *= s;
+ return this;
+ }
+
+ lerp(color, alpha) {
+ this.r += (color.r - this.r) * alpha;
+ this.g += (color.g - this.g) * alpha;
+ this.b += (color.b - this.b) * alpha;
+ return this;
+ }
+
+ lerpColors(color1, color2, alpha) {
+ this.r = color1.r + (color2.r - color1.r) * alpha;
+ this.g = color1.g + (color2.g - color1.g) * alpha;
+ this.b = color1.b + (color2.b - color1.b) * alpha;
+ return this;
+ }
+
+ lerpHSL(color, alpha) {
+ this.getHSL(_hslA);
+ color.getHSL(_hslB);
+ const h = lerp(_hslA.h, _hslB.h, alpha);
+ const s = lerp(_hslA.s, _hslB.s, alpha);
+ const l = lerp(_hslA.l, _hslB.l, alpha);
+ this.setHSL(h, s, l);
+ return this;
+ }
+
+ equals(c) {
+ return c.r === this.r && c.g === this.g && c.b === this.b;
+ }
+
+ fromArray(array, offset = 0) {
+ this.r = array[offset];
+ this.g = array[offset + 1];
+ this.b = array[offset + 2];
+ return this;
+ }
+
+ toArray(array = [], offset = 0) {
+ array[offset] = this.r;
+ array[offset + 1] = this.g;
+ array[offset + 2] = this.b;
+ return array;
+ }
+
+ fromBufferAttribute(attribute, index) {
+ this.r = attribute.getX(index);
+ this.g = attribute.getY(index);
+ this.b = attribute.getZ(index);
+
+ if (attribute.normalized === true) {
+ // assuming Uint8Array
+ this.r /= 255;
+ this.g /= 255;
+ this.b /= 255;
+ }
+
+ return this;
+ }
+
+ toJSON() {
+ return this.getHex();
+ }
+
+ }
+
+ Color.NAMES = _colorKeywords;
+ Color.prototype.isColor = true;
+ Color.prototype.r = 1;
+ Color.prototype.g = 1;
+ Color.prototype.b = 1;
+
+ /**
+ * parameters = {
+ * color: ,
+ * opacity: ,
+ * map: new THREE.Texture( ),
+ *
+ * lightMap: new THREE.Texture( ),
+ * lightMapIntensity:
+ *
+ * aoMap: new THREE.Texture( ),
+ * aoMapIntensity:
+ *
+ * specularMap: new THREE.Texture( ),
+ *
+ * alphaMap: new THREE.Texture( ),
+ *
+ * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
+ * combine: THREE.Multiply,
+ * reflectivity: ,
+ * refractionRatio: ,
+ *
+ * depthTest: ,
+ * depthWrite: ,
+ *
+ * wireframe: ,
+ * wireframeLinewidth: ,
+ * }
+ */
+
+ class MeshBasicMaterial extends Material {
+ constructor(parameters) {
+ super();
+ this.type = 'MeshBasicMaterial';
+ this.color = new Color(0xffffff); // emissive
+
+ this.map = null;
+ this.lightMap = null;
+ this.lightMapIntensity = 1.0;
+ this.aoMap = null;
+ this.aoMapIntensity = 1.0;
+ this.specularMap = null;
+ this.alphaMap = null;
+ this.envMap = null;
+ this.combine = MultiplyOperation;
+ this.reflectivity = 1;
+ this.refractionRatio = 0.98;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.wireframeLinecap = 'round';
+ this.wireframeLinejoin = 'round';
+ this.setValues(parameters);
+ }
+
+ copy(source) {
+ super.copy(source);
+ this.color.copy(source.color);
+ this.map = source.map;
+ this.lightMap = source.lightMap;
+ this.lightMapIntensity = source.lightMapIntensity;
+ this.aoMap = source.aoMap;
+ this.aoMapIntensity = source.aoMapIntensity;
+ this.specularMap = source.specularMap;
+ this.alphaMap = source.alphaMap;
+ this.envMap = source.envMap;
+ this.combine = source.combine;
+ this.reflectivity = source.reflectivity;
+ this.refractionRatio = source.refractionRatio;
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ this.wireframeLinecap = source.wireframeLinecap;
+ this.wireframeLinejoin = source.wireframeLinejoin;
+ return this;
+ }
+
+ }
+
+ MeshBasicMaterial.prototype.isMeshBasicMaterial = true;
+
+ const _vector$9 = /*@__PURE__*/new Vector3();
+
+ const _vector2$1 = /*@__PURE__*/new Vector2();
+
+ class BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ if (Array.isArray(array)) {
+ throw new TypeError('THREE.BufferAttribute: array should be a Typed Array.');
+ }
+
+ this.name = '';
+ this.array = array;
+ this.itemSize = itemSize;
+ this.count = array !== undefined ? array.length / itemSize : 0;
+ this.normalized = normalized === true;
+ this.usage = StaticDrawUsage;
+ this.updateRange = {
+ offset: 0,
+ count: -1
+ };
+ this.version = 0;
+ }
+
+ onUploadCallback() {}
+
+ set needsUpdate(value) {
+ if (value === true) this.version++;
+ }
+
+ setUsage(value) {
+ this.usage = value;
+ return this;
+ }
+
+ copy(source) {
+ this.name = source.name;
+ this.array = new source.array.constructor(source.array);
+ this.itemSize = source.itemSize;
+ this.count = source.count;
+ this.normalized = source.normalized;
+ this.usage = source.usage;
+ return this;
+ }
+
+ copyAt(index1, attribute, index2) {
+ index1 *= this.itemSize;
+ index2 *= attribute.itemSize;
+
+ for (let i = 0, l = this.itemSize; i < l; i++) {
+ this.array[index1 + i] = attribute.array[index2 + i];
+ }
+
+ return this;
+ }
+
+ copyArray(array) {
+ this.array.set(array);
+ return this;
+ }
+
+ copyColorsArray(colors) {
+ const array = this.array;
+ let offset = 0;
+
+ for (let i = 0, l = colors.length; i < l; i++) {
+ let color = colors[i];
+
+ if (color === undefined) {
+ console.warn('THREE.BufferAttribute.copyColorsArray(): color is undefined', i);
+ color = new Color();
+ }
+
+ array[offset++] = color.r;
+ array[offset++] = color.g;
+ array[offset++] = color.b;
+ }
+
+ return this;
+ }
+
+ copyVector2sArray(vectors) {
+ const array = this.array;
+ let offset = 0;
+
+ for (let i = 0, l = vectors.length; i < l; i++) {
+ let vector = vectors[i];
+
+ if (vector === undefined) {
+ console.warn('THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i);
+ vector = new Vector2();
+ }
+
+ array[offset++] = vector.x;
+ array[offset++] = vector.y;
+ }
+
+ return this;
+ }
+
+ copyVector3sArray(vectors) {
+ const array = this.array;
+ let offset = 0;
+
+ for (let i = 0, l = vectors.length; i < l; i++) {
+ let vector = vectors[i];
+
+ if (vector === undefined) {
+ console.warn('THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i);
+ vector = new Vector3();
+ }
+
+ array[offset++] = vector.x;
+ array[offset++] = vector.y;
+ array[offset++] = vector.z;
+ }
+
+ return this;
+ }
+
+ copyVector4sArray(vectors) {
+ const array = this.array;
+ let offset = 0;
+
+ for (let i = 0, l = vectors.length; i < l; i++) {
+ let vector = vectors[i];
+
+ if (vector === undefined) {
+ console.warn('THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i);
+ vector = new Vector4();
+ }
+
+ array[offset++] = vector.x;
+ array[offset++] = vector.y;
+ array[offset++] = vector.z;
+ array[offset++] = vector.w;
+ }
+
+ return this;
+ }
+
+ applyMatrix3(m) {
+ if (this.itemSize === 2) {
+ for (let i = 0, l = this.count; i < l; i++) {
+ _vector2$1.fromBufferAttribute(this, i);
+
+ _vector2$1.applyMatrix3(m);
+
+ this.setXY(i, _vector2$1.x, _vector2$1.y);
+ }
+ } else if (this.itemSize === 3) {
+ for (let i = 0, l = this.count; i < l; i++) {
+ _vector$9.fromBufferAttribute(this, i);
+
+ _vector$9.applyMatrix3(m);
+
+ this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
+ }
+ }
+
+ return this;
+ }
+
+ applyMatrix4(m) {
+ for (let i = 0, l = this.count; i < l; i++) {
+ _vector$9.x = this.getX(i);
+ _vector$9.y = this.getY(i);
+ _vector$9.z = this.getZ(i);
+
+ _vector$9.applyMatrix4(m);
+
+ this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
+ }
+
+ return this;
+ }
+
+ applyNormalMatrix(m) {
+ for (let i = 0, l = this.count; i < l; i++) {
+ _vector$9.x = this.getX(i);
+ _vector$9.y = this.getY(i);
+ _vector$9.z = this.getZ(i);
+
+ _vector$9.applyNormalMatrix(m);
+
+ this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
+ }
+
+ return this;
+ }
+
+ transformDirection(m) {
+ for (let i = 0, l = this.count; i < l; i++) {
+ _vector$9.x = this.getX(i);
+ _vector$9.y = this.getY(i);
+ _vector$9.z = this.getZ(i);
+
+ _vector$9.transformDirection(m);
+
+ this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
+ }
+
+ return this;
+ }
+
+ set(value, offset = 0) {
+ this.array.set(value, offset);
+ return this;
+ }
+
+ getX(index) {
+ return this.array[index * this.itemSize];
+ }
+
+ setX(index, x) {
+ this.array[index * this.itemSize] = x;
+ return this;
+ }
+
+ getY(index) {
+ return this.array[index * this.itemSize + 1];
+ }
+
+ setY(index, y) {
+ this.array[index * this.itemSize + 1] = y;
+ return this;
+ }
+
+ getZ(index) {
+ return this.array[index * this.itemSize + 2];
+ }
+
+ setZ(index, z) {
+ this.array[index * this.itemSize + 2] = z;
+ return this;
+ }
+
+ getW(index) {
+ return this.array[index * this.itemSize + 3];
+ }
+
+ setW(index, w) {
+ this.array[index * this.itemSize + 3] = w;
+ return this;
+ }
+
+ setXY(index, x, y) {
+ index *= this.itemSize;
+ this.array[index + 0] = x;
+ this.array[index + 1] = y;
+ return this;
+ }
+
+ setXYZ(index, x, y, z) {
+ index *= this.itemSize;
+ this.array[index + 0] = x;
+ this.array[index + 1] = y;
+ this.array[index + 2] = z;
+ return this;
+ }
+
+ setXYZW(index, x, y, z, w) {
+ index *= this.itemSize;
+ this.array[index + 0] = x;
+ this.array[index + 1] = y;
+ this.array[index + 2] = z;
+ this.array[index + 3] = w;
+ return this;
+ }
+
+ onUpload(callback) {
+ this.onUploadCallback = callback;
+ return this;
+ }
+
+ clone() {
+ return new this.constructor(this.array, this.itemSize).copy(this);
+ }
+
+ toJSON() {
+ const data = {
+ itemSize: this.itemSize,
+ type: this.array.constructor.name,
+ array: Array.prototype.slice.call(this.array),
+ normalized: this.normalized
+ };
+ if (this.name !== '') data.name = this.name;
+ if (this.usage !== StaticDrawUsage) data.usage = this.usage;
+ if (this.updateRange.offset !== 0 || this.updateRange.count !== -1) data.updateRange = this.updateRange;
+ return data;
+ }
+
+ }
+
+ BufferAttribute.prototype.isBufferAttribute = true; //
+
+ class Int8BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Int8Array(array), itemSize, normalized);
+ }
+
+ }
+
+ class Uint8BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Uint8Array(array), itemSize, normalized);
+ }
+
+ }
+
+ class Uint8ClampedBufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Uint8ClampedArray(array), itemSize, normalized);
+ }
+
+ }
+
+ class Int16BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Int16Array(array), itemSize, normalized);
+ }
+
+ }
+
+ class Uint16BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Uint16Array(array), itemSize, normalized);
+ }
+
+ }
+
+ class Int32BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Int32Array(array), itemSize, normalized);
+ }
+
+ }
+
+ class Uint32BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Uint32Array(array), itemSize, normalized);
+ }
+
+ }
+
+ class Float16BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Uint16Array(array), itemSize, normalized);
+ }
+
+ }
+
+ Float16BufferAttribute.prototype.isFloat16BufferAttribute = true;
+
+ class Float32BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Float32Array(array), itemSize, normalized);
+ }
+
+ }
+
+ class Float64BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Float64Array(array), itemSize, normalized);
+ }
+
+ } //
+
+ let _id$1 = 0;
+
+ const _m1 = /*@__PURE__*/new Matrix4();
+
+ const _obj = /*@__PURE__*/new Object3D();
+
+ const _offset = /*@__PURE__*/new Vector3();
+
+ const _box$1 = /*@__PURE__*/new Box3();
+
+ const _boxMorphTargets = /*@__PURE__*/new Box3();
+
+ const _vector$8 = /*@__PURE__*/new Vector3();
+
+ class BufferGeometry extends EventDispatcher {
+ constructor() {
+ super();
+ Object.defineProperty(this, 'id', {
+ value: _id$1++
+ });
+ this.uuid = generateUUID();
+ this.name = '';
+ this.type = 'BufferGeometry';
+ this.index = null;
+ this.attributes = {};
+ this.morphAttributes = {};
+ this.morphTargetsRelative = false;
+ this.groups = [];
+ this.boundingBox = null;
+ this.boundingSphere = null;
+ this.drawRange = {
+ start: 0,
+ count: Infinity
+ };
+ this.userData = {};
+ }
+
+ getIndex() {
+ return this.index;
+ }
+
+ setIndex(index) {
+ if (Array.isArray(index)) {
+ this.index = new (arrayMax(index) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(index, 1);
+ } else {
+ this.index = index;
+ }
+
+ return this;
+ }
+
+ getAttribute(name) {
+ return this.attributes[name];
+ }
+
+ setAttribute(name, attribute) {
+ this.attributes[name] = attribute;
+ return this;
+ }
+
+ deleteAttribute(name) {
+ delete this.attributes[name];
+ return this;
+ }
+
+ hasAttribute(name) {
+ return this.attributes[name] !== undefined;
+ }
+
+ addGroup(start, count, materialIndex = 0) {
+ this.groups.push({
+ start: start,
+ count: count,
+ materialIndex: materialIndex
+ });
+ }
+
+ clearGroups() {
+ this.groups = [];
+ }
+
+ setDrawRange(start, count) {
+ this.drawRange.start = start;
+ this.drawRange.count = count;
+ }
+
+ applyMatrix4(matrix) {
+ const position = this.attributes.position;
+
+ if (position !== undefined) {
+ position.applyMatrix4(matrix);
+ position.needsUpdate = true;
+ }
+
+ const normal = this.attributes.normal;
+
+ if (normal !== undefined) {
+ const normalMatrix = new Matrix3().getNormalMatrix(matrix);
+ normal.applyNormalMatrix(normalMatrix);
+ normal.needsUpdate = true;
+ }
+
+ const tangent = this.attributes.tangent;
+
+ if (tangent !== undefined) {
+ tangent.transformDirection(matrix);
+ tangent.needsUpdate = true;
+ }
+
+ if (this.boundingBox !== null) {
+ this.computeBoundingBox();
+ }
+
+ if (this.boundingSphere !== null) {
+ this.computeBoundingSphere();
+ }
+
+ return this;
+ }
+
+ applyQuaternion(q) {
+ _m1.makeRotationFromQuaternion(q);
+
+ this.applyMatrix4(_m1);
+ return this;
+ }
+
+ rotateX(angle) {
+ // rotate geometry around world x-axis
+ _m1.makeRotationX(angle);
+
+ this.applyMatrix4(_m1);
+ return this;
+ }
+
+ rotateY(angle) {
+ // rotate geometry around world y-axis
+ _m1.makeRotationY(angle);
+
+ this.applyMatrix4(_m1);
+ return this;
+ }
+
+ rotateZ(angle) {
+ // rotate geometry around world z-axis
+ _m1.makeRotationZ(angle);
+
+ this.applyMatrix4(_m1);
+ return this;
+ }
+
+ translate(x, y, z) {
+ // translate geometry
+ _m1.makeTranslation(x, y, z);
+
+ this.applyMatrix4(_m1);
+ return this;
+ }
+
+ scale(x, y, z) {
+ // scale geometry
+ _m1.makeScale(x, y, z);
+
+ this.applyMatrix4(_m1);
+ return this;
+ }
+
+ lookAt(vector) {
+ _obj.lookAt(vector);
+
+ _obj.updateMatrix();
+
+ this.applyMatrix4(_obj.matrix);
+ return this;
+ }
+
+ center() {
+ this.computeBoundingBox();
+ this.boundingBox.getCenter(_offset).negate();
+ this.translate(_offset.x, _offset.y, _offset.z);
+ return this;
+ }
+
+ setFromPoints(points) {
+ const position = [];
+
+ for (let i = 0, l = points.length; i < l; i++) {
+ const point = points[i];
+ position.push(point.x, point.y, point.z || 0);
+ }
+
+ this.setAttribute('position', new Float32BufferAttribute(position, 3));
+ return this;
+ }
+
+ computeBoundingBox() {
+ if (this.boundingBox === null) {
+ this.boundingBox = new Box3();
+ }
+
+ const position = this.attributes.position;
+ const morphAttributesPosition = this.morphAttributes.position;
+
+ if (position && position.isGLBufferAttribute) {
+ console.error('THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".', this);
+ this.boundingBox.set(new Vector3(-Infinity, -Infinity, -Infinity), new Vector3(+Infinity, +Infinity, +Infinity));
+ return;
+ }
+
+ if (position !== undefined) {
+ this.boundingBox.setFromBufferAttribute(position); // process morph attributes if present
+
+ if (morphAttributesPosition) {
+ for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
+ const morphAttribute = morphAttributesPosition[i];
+
+ _box$1.setFromBufferAttribute(morphAttribute);
+
+ if (this.morphTargetsRelative) {
+ _vector$8.addVectors(this.boundingBox.min, _box$1.min);
+
+ this.boundingBox.expandByPoint(_vector$8);
+
+ _vector$8.addVectors(this.boundingBox.max, _box$1.max);
+
+ this.boundingBox.expandByPoint(_vector$8);
+ } else {
+ this.boundingBox.expandByPoint(_box$1.min);
+ this.boundingBox.expandByPoint(_box$1.max);
+ }
+ }
+ }
+ } else {
+ this.boundingBox.makeEmpty();
+ }
+
+ if (isNaN(this.boundingBox.min.x) || isNaN(this.boundingBox.min.y) || isNaN(this.boundingBox.min.z)) {
+ console.error('THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this);
+ }
+ }
+
+ computeBoundingSphere() {
+ if (this.boundingSphere === null) {
+ this.boundingSphere = new Sphere();
+ }
+
+ const position = this.attributes.position;
+ const morphAttributesPosition = this.morphAttributes.position;
+
+ if (position && position.isGLBufferAttribute) {
+ console.error('THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".', this);
+ this.boundingSphere.set(new Vector3(), Infinity);
+ return;
+ }
+
+ if (position) {
+ // first, find the center of the bounding sphere
+ const center = this.boundingSphere.center;
+
+ _box$1.setFromBufferAttribute(position); // process morph attributes if present
+
+
+ if (morphAttributesPosition) {
+ for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
+ const morphAttribute = morphAttributesPosition[i];
+
+ _boxMorphTargets.setFromBufferAttribute(morphAttribute);
+
+ if (this.morphTargetsRelative) {
+ _vector$8.addVectors(_box$1.min, _boxMorphTargets.min);
+
+ _box$1.expandByPoint(_vector$8);
+
+ _vector$8.addVectors(_box$1.max, _boxMorphTargets.max);
+
+ _box$1.expandByPoint(_vector$8);
+ } else {
+ _box$1.expandByPoint(_boxMorphTargets.min);
+
+ _box$1.expandByPoint(_boxMorphTargets.max);
+ }
+ }
+ }
+
+ _box$1.getCenter(center); // second, try to find a boundingSphere with a radius smaller than the
+ // boundingSphere of the boundingBox: sqrt(3) smaller in the best case
+
+
+ let maxRadiusSq = 0;
+
+ for (let i = 0, il = position.count; i < il; i++) {
+ _vector$8.fromBufferAttribute(position, i);
+
+ maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8));
+ } // process morph attributes if present
+
+
+ if (morphAttributesPosition) {
+ for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
+ const morphAttribute = morphAttributesPosition[i];
+ const morphTargetsRelative = this.morphTargetsRelative;
+
+ for (let j = 0, jl = morphAttribute.count; j < jl; j++) {
+ _vector$8.fromBufferAttribute(morphAttribute, j);
+
+ if (morphTargetsRelative) {
+ _offset.fromBufferAttribute(position, j);
+
+ _vector$8.add(_offset);
+ }
+
+ maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8));
+ }
+ }
+ }
+
+ this.boundingSphere.radius = Math.sqrt(maxRadiusSq);
+
+ if (isNaN(this.boundingSphere.radius)) {
+ console.error('THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this);
+ }
+ }
+ }
+
+ computeTangents() {
+ const index = this.index;
+ const attributes = this.attributes; // based on http://www.terathon.com/code/tangent.html
+ // (per vertex tangents)
+
+ if (index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined) {
+ console.error('THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)');
+ return;
+ }
+
+ const indices = index.array;
+ const positions = attributes.position.array;
+ const normals = attributes.normal.array;
+ const uvs = attributes.uv.array;
+ const nVertices = positions.length / 3;
+
+ if (attributes.tangent === undefined) {
+ this.setAttribute('tangent', new BufferAttribute(new Float32Array(4 * nVertices), 4));
+ }
+
+ const tangents = attributes.tangent.array;
+ const tan1 = [],
+ tan2 = [];
+
+ for (let i = 0; i < nVertices; i++) {
+ tan1[i] = new Vector3();
+ tan2[i] = new Vector3();
+ }
+
+ const vA = new Vector3(),
+ vB = new Vector3(),
+ vC = new Vector3(),
+ uvA = new Vector2(),
+ uvB = new Vector2(),
+ uvC = new Vector2(),
+ sdir = new Vector3(),
+ tdir = new Vector3();
+
+ function handleTriangle(a, b, c) {
+ vA.fromArray(positions, a * 3);
+ vB.fromArray(positions, b * 3);
+ vC.fromArray(positions, c * 3);
+ uvA.fromArray(uvs, a * 2);
+ uvB.fromArray(uvs, b * 2);
+ uvC.fromArray(uvs, c * 2);
+ vB.sub(vA);
+ vC.sub(vA);
+ uvB.sub(uvA);
+ uvC.sub(uvA);
+ const r = 1.0 / (uvB.x * uvC.y - uvC.x * uvB.y); // silently ignore degenerate uv triangles having coincident or colinear vertices
+
+ if (!isFinite(r)) return;
+ sdir.copy(vB).multiplyScalar(uvC.y).addScaledVector(vC, -uvB.y).multiplyScalar(r);
+ tdir.copy(vC).multiplyScalar(uvB.x).addScaledVector(vB, -uvC.x).multiplyScalar(r);
+ tan1[a].add(sdir);
+ tan1[b].add(sdir);
+ tan1[c].add(sdir);
+ tan2[a].add(tdir);
+ tan2[b].add(tdir);
+ tan2[c].add(tdir);
+ }
+
+ let groups = this.groups;
+
+ if (groups.length === 0) {
+ groups = [{
+ start: 0,
+ count: indices.length
+ }];
+ }
+
+ for (let i = 0, il = groups.length; i < il; ++i) {
+ const group = groups[i];
+ const start = group.start;
+ const count = group.count;
+
+ for (let j = start, jl = start + count; j < jl; j += 3) {
+ handleTriangle(indices[j + 0], indices[j + 1], indices[j + 2]);
+ }
+ }
+
+ const tmp = new Vector3(),
+ tmp2 = new Vector3();
+ const n = new Vector3(),
+ n2 = new Vector3();
+
+ function handleVertex(v) {
+ n.fromArray(normals, v * 3);
+ n2.copy(n);
+ const t = tan1[v]; // Gram-Schmidt orthogonalize
+
+ tmp.copy(t);
+ tmp.sub(n.multiplyScalar(n.dot(t))).normalize(); // Calculate handedness
+
+ tmp2.crossVectors(n2, t);
+ const test = tmp2.dot(tan2[v]);
+ const w = test < 0.0 ? -1.0 : 1.0;
+ tangents[v * 4] = tmp.x;
+ tangents[v * 4 + 1] = tmp.y;
+ tangents[v * 4 + 2] = tmp.z;
+ tangents[v * 4 + 3] = w;
+ }
+
+ for (let i = 0, il = groups.length; i < il; ++i) {
+ const group = groups[i];
+ const start = group.start;
+ const count = group.count;
+
+ for (let j = start, jl = start + count; j < jl; j += 3) {
+ handleVertex(indices[j + 0]);
+ handleVertex(indices[j + 1]);
+ handleVertex(indices[j + 2]);
+ }
+ }
+ }
+
+ computeVertexNormals() {
+ const index = this.index;
+ const positionAttribute = this.getAttribute('position');
+
+ if (positionAttribute !== undefined) {
+ let normalAttribute = this.getAttribute('normal');
+
+ if (normalAttribute === undefined) {
+ normalAttribute = new BufferAttribute(new Float32Array(positionAttribute.count * 3), 3);
+ this.setAttribute('normal', normalAttribute);
+ } else {
+ // reset existing normals to zero
+ for (let i = 0, il = normalAttribute.count; i < il; i++) {
+ normalAttribute.setXYZ(i, 0, 0, 0);
+ }
+ }
+
+ const pA = new Vector3(),
+ pB = new Vector3(),
+ pC = new Vector3();
+ const nA = new Vector3(),
+ nB = new Vector3(),
+ nC = new Vector3();
+ const cb = new Vector3(),
+ ab = new Vector3(); // indexed elements
+
+ if (index) {
+ for (let i = 0, il = index.count; i < il; i += 3) {
+ const vA = index.getX(i + 0);
+ const vB = index.getX(i + 1);
+ const vC = index.getX(i + 2);
+ pA.fromBufferAttribute(positionAttribute, vA);
+ pB.fromBufferAttribute(positionAttribute, vB);
+ pC.fromBufferAttribute(positionAttribute, vC);
+ cb.subVectors(pC, pB);
+ ab.subVectors(pA, pB);
+ cb.cross(ab);
+ nA.fromBufferAttribute(normalAttribute, vA);
+ nB.fromBufferAttribute(normalAttribute, vB);
+ nC.fromBufferAttribute(normalAttribute, vC);
+ nA.add(cb);
+ nB.add(cb);
+ nC.add(cb);
+ normalAttribute.setXYZ(vA, nA.x, nA.y, nA.z);
+ normalAttribute.setXYZ(vB, nB.x, nB.y, nB.z);
+ normalAttribute.setXYZ(vC, nC.x, nC.y, nC.z);
+ }
+ } else {
+ // non-indexed elements (unconnected triangle soup)
+ for (let i = 0, il = positionAttribute.count; i < il; i += 3) {
+ pA.fromBufferAttribute(positionAttribute, i + 0);
+ pB.fromBufferAttribute(positionAttribute, i + 1);
+ pC.fromBufferAttribute(positionAttribute, i + 2);
+ cb.subVectors(pC, pB);
+ ab.subVectors(pA, pB);
+ cb.cross(ab);
+ normalAttribute.setXYZ(i + 0, cb.x, cb.y, cb.z);
+ normalAttribute.setXYZ(i + 1, cb.x, cb.y, cb.z);
+ normalAttribute.setXYZ(i + 2, cb.x, cb.y, cb.z);
+ }
+ }
+
+ this.normalizeNormals();
+ normalAttribute.needsUpdate = true;
+ }
+ }
+
+ merge(geometry, offset) {
+ if (!(geometry && geometry.isBufferGeometry)) {
+ console.error('THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry);
+ return;
+ }
+
+ if (offset === undefined) {
+ offset = 0;
+ console.warn('THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.');
+ }
+
+ const attributes = this.attributes;
+
+ for (const key in attributes) {
+ if (geometry.attributes[key] === undefined) continue;
+ const attribute1 = attributes[key];
+ const attributeArray1 = attribute1.array;
+ const attribute2 = geometry.attributes[key];
+ const attributeArray2 = attribute2.array;
+ const attributeOffset = attribute2.itemSize * offset;
+ const length = Math.min(attributeArray2.length, attributeArray1.length - attributeOffset);
+
+ for (let i = 0, j = attributeOffset; i < length; i++, j++) {
+ attributeArray1[j] = attributeArray2[i];
+ }
+ }
+
+ return this;
+ }
+
+ normalizeNormals() {
+ const normals = this.attributes.normal;
+
+ for (let i = 0, il = normals.count; i < il; i++) {
+ _vector$8.fromBufferAttribute(normals, i);
+
+ _vector$8.normalize();
+
+ normals.setXYZ(i, _vector$8.x, _vector$8.y, _vector$8.z);
+ }
+ }
+
+ toNonIndexed() {
+ function convertBufferAttribute(attribute, indices) {
+ const array = attribute.array;
+ const itemSize = attribute.itemSize;
+ const normalized = attribute.normalized;
+ const array2 = new array.constructor(indices.length * itemSize);
+ let index = 0,
+ index2 = 0;
+
+ for (let i = 0, l = indices.length; i < l; i++) {
+ if (attribute.isInterleavedBufferAttribute) {
+ index = indices[i] * attribute.data.stride + attribute.offset;
+ } else {
+ index = indices[i] * itemSize;
+ }
+
+ for (let j = 0; j < itemSize; j++) {
+ array2[index2++] = array[index++];
+ }
+ }
+
+ return new BufferAttribute(array2, itemSize, normalized);
+ } //
+
+
+ if (this.index === null) {
+ console.warn('THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.');
+ return this;
+ }
+
+ const geometry2 = new BufferGeometry();
+ const indices = this.index.array;
+ const attributes = this.attributes; // attributes
+
+ for (const name in attributes) {
+ const attribute = attributes[name];
+ const newAttribute = convertBufferAttribute(attribute, indices);
+ geometry2.setAttribute(name, newAttribute);
+ } // morph attributes
+
+
+ const morphAttributes = this.morphAttributes;
+
+ for (const name in morphAttributes) {
+ const morphArray = [];
+ const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes
+
+ for (let i = 0, il = morphAttribute.length; i < il; i++) {
+ const attribute = morphAttribute[i];
+ const newAttribute = convertBufferAttribute(attribute, indices);
+ morphArray.push(newAttribute);
+ }
+
+ geometry2.morphAttributes[name] = morphArray;
+ }
+
+ geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups
+
+ const groups = this.groups;
+
+ for (let i = 0, l = groups.length; i < l; i++) {
+ const group = groups[i];
+ geometry2.addGroup(group.start, group.count, group.materialIndex);
+ }
+
+ return geometry2;
+ }
+
+ toJSON() {
+ const data = {
+ metadata: {
+ version: 4.5,
+ type: 'BufferGeometry',
+ generator: 'BufferGeometry.toJSON'
+ }
+ }; // standard BufferGeometry serialization
+
+ data.uuid = this.uuid;
+ data.type = this.type;
+ if (this.name !== '') data.name = this.name;
+ if (Object.keys(this.userData).length > 0) data.userData = this.userData;
+
+ if (this.parameters !== undefined) {
+ const parameters = this.parameters;
+
+ for (const key in parameters) {
+ if (parameters[key] !== undefined) data[key] = parameters[key];
+ }
+
+ return data;
+ } // for simplicity the code assumes attributes are not shared across geometries, see #15811
+
+
+ data.data = {
+ attributes: {}
+ };
+ const index = this.index;
+
+ if (index !== null) {
+ data.data.index = {
+ type: index.array.constructor.name,
+ array: Array.prototype.slice.call(index.array)
+ };
+ }
+
+ const attributes = this.attributes;
+
+ for (const key in attributes) {
+ const attribute = attributes[key];
+ data.data.attributes[key] = attribute.toJSON(data.data);
+ }
+
+ const morphAttributes = {};
+ let hasMorphAttributes = false;
+
+ for (const key in this.morphAttributes) {
+ const attributeArray = this.morphAttributes[key];
+ const array = [];
+
+ for (let i = 0, il = attributeArray.length; i < il; i++) {
+ const attribute = attributeArray[i];
+ array.push(attribute.toJSON(data.data));
+ }
+
+ if (array.length > 0) {
+ morphAttributes[key] = array;
+ hasMorphAttributes = true;
+ }
+ }
+
+ if (hasMorphAttributes) {
+ data.data.morphAttributes = morphAttributes;
+ data.data.morphTargetsRelative = this.morphTargetsRelative;
+ }
+
+ const groups = this.groups;
+
+ if (groups.length > 0) {
+ data.data.groups = JSON.parse(JSON.stringify(groups));
+ }
+
+ const boundingSphere = this.boundingSphere;
+
+ if (boundingSphere !== null) {
+ data.data.boundingSphere = {
+ center: boundingSphere.center.toArray(),
+ radius: boundingSphere.radius
+ };
+ }
+
+ return data;
+ }
+
+ clone() {
+ return new this.constructor().copy(this);
+ }
+
+ copy(source) {
+ // reset
+ this.index = null;
+ this.attributes = {};
+ this.morphAttributes = {};
+ this.groups = [];
+ this.boundingBox = null;
+ this.boundingSphere = null; // used for storing cloned, shared data
+
+ const data = {}; // name
+
+ this.name = source.name; // index
+
+ const index = source.index;
+
+ if (index !== null) {
+ this.setIndex(index.clone(data));
+ } // attributes
+
+
+ const attributes = source.attributes;
+
+ for (const name in attributes) {
+ const attribute = attributes[name];
+ this.setAttribute(name, attribute.clone(data));
+ } // morph attributes
+
+
+ const morphAttributes = source.morphAttributes;
+
+ for (const name in morphAttributes) {
+ const array = [];
+ const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes
+
+ for (let i = 0, l = morphAttribute.length; i < l; i++) {
+ array.push(morphAttribute[i].clone(data));
+ }
+
+ this.morphAttributes[name] = array;
+ }
+
+ this.morphTargetsRelative = source.morphTargetsRelative; // groups
+
+ const groups = source.groups;
+
+ for (let i = 0, l = groups.length; i < l; i++) {
+ const group = groups[i];
+ this.addGroup(group.start, group.count, group.materialIndex);
+ } // bounding box
+
+
+ const boundingBox = source.boundingBox;
+
+ if (boundingBox !== null) {
+ this.boundingBox = boundingBox.clone();
+ } // bounding sphere
+
+
+ const boundingSphere = source.boundingSphere;
+
+ if (boundingSphere !== null) {
+ this.boundingSphere = boundingSphere.clone();
+ } // draw range
+
+
+ this.drawRange.start = source.drawRange.start;
+ this.drawRange.count = source.drawRange.count; // user data
+
+ this.userData = source.userData; // geometry generator parameters
+
+ if (source.parameters !== undefined) this.parameters = Object.assign({}, source.parameters);
+ return this;
+ }
+
+ dispose() {
+ this.dispatchEvent({
+ type: 'dispose'
+ });
+ }
+
+ }
+
+ BufferGeometry.prototype.isBufferGeometry = true;
+
+ const _inverseMatrix$2 = /*@__PURE__*/new Matrix4();
+
+ const _ray$2 = /*@__PURE__*/new Ray();
+
+ const _sphere$3 = /*@__PURE__*/new Sphere();
+
+ const _vA$1 = /*@__PURE__*/new Vector3();
+
+ const _vB$1 = /*@__PURE__*/new Vector3();
+
+ const _vC$1 = /*@__PURE__*/new Vector3();
+
+ const _tempA = /*@__PURE__*/new Vector3();
+
+ const _tempB = /*@__PURE__*/new Vector3();
+
+ const _tempC = /*@__PURE__*/new Vector3();
+
+ const _morphA = /*@__PURE__*/new Vector3();
+
+ const _morphB = /*@__PURE__*/new Vector3();
+
+ const _morphC = /*@__PURE__*/new Vector3();
+
+ const _uvA$1 = /*@__PURE__*/new Vector2();
+
+ const _uvB$1 = /*@__PURE__*/new Vector2();
+
+ const _uvC$1 = /*@__PURE__*/new Vector2();
+
+ const _intersectionPoint = /*@__PURE__*/new Vector3();
+
+ const _intersectionPointWorld = /*@__PURE__*/new Vector3();
+
+ class Mesh extends Object3D {
+ constructor(geometry = new BufferGeometry(), material = new MeshBasicMaterial()) {
+ super();
+ this.type = 'Mesh';
+ this.geometry = geometry;
+ this.material = material;
+ this.updateMorphTargets();
+ }
+
+ copy(source) {
+ super.copy(source);
+
+ if (source.morphTargetInfluences !== undefined) {
+ this.morphTargetInfluences = source.morphTargetInfluences.slice();
+ }
+
+ if (source.morphTargetDictionary !== undefined) {
+ this.morphTargetDictionary = Object.assign({}, source.morphTargetDictionary);
+ }
+
+ this.material = source.material;
+ this.geometry = source.geometry;
+ return this;
+ }
+
+ updateMorphTargets() {
+ const geometry = this.geometry;
+
+ if (geometry.isBufferGeometry) {
+ const morphAttributes = geometry.morphAttributes;
+ const keys = Object.keys(morphAttributes);
+
+ if (keys.length > 0) {
+ const morphAttribute = morphAttributes[keys[0]];
+
+ if (morphAttribute !== undefined) {
+ this.morphTargetInfluences = [];
+ this.morphTargetDictionary = {};
+
+ for (let m = 0, ml = morphAttribute.length; m < ml; m++) {
+ const name = morphAttribute[m].name || String(m);
+ this.morphTargetInfluences.push(0);
+ this.morphTargetDictionary[name] = m;
+ }
+ }
+ }
+ } else {
+ const morphTargets = geometry.morphTargets;
+
+ if (morphTargets !== undefined && morphTargets.length > 0) {
+ console.error('THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
+ }
+ }
+ }
+
+ raycast(raycaster, intersects) {
+ const geometry = this.geometry;
+ const material = this.material;
+ const matrixWorld = this.matrixWorld;
+ if (material === undefined) return; // Checking boundingSphere distance to ray
+
+ if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
+
+ _sphere$3.copy(geometry.boundingSphere);
+
+ _sphere$3.applyMatrix4(matrixWorld);
+
+ if (raycaster.ray.intersectsSphere(_sphere$3) === false) return; //
+
+ _inverseMatrix$2.copy(matrixWorld).invert();
+
+ _ray$2.copy(raycaster.ray).applyMatrix4(_inverseMatrix$2); // Check boundingBox before continuing
+
+
+ if (geometry.boundingBox !== null) {
+ if (_ray$2.intersectsBox(geometry.boundingBox) === false) return;
+ }
+
+ let intersection;
+
+ if (geometry.isBufferGeometry) {
+ const index = geometry.index;
+ const position = geometry.attributes.position;
+ const morphPosition = geometry.morphAttributes.position;
+ const morphTargetsRelative = geometry.morphTargetsRelative;
+ const uv = geometry.attributes.uv;
+ const uv2 = geometry.attributes.uv2;
+ const groups = geometry.groups;
+ const drawRange = geometry.drawRange;
+
+ if (index !== null) {
+ // indexed buffer geometry
+ if (Array.isArray(material)) {
+ for (let i = 0, il = groups.length; i < il; i++) {
+ const group = groups[i];
+ const groupMaterial = material[group.materialIndex];
+ const start = Math.max(group.start, drawRange.start);
+ const end = Math.min(index.count, Math.min(group.start + group.count, drawRange.start + drawRange.count));
+
+ for (let j = start, jl = end; j < jl; j += 3) {
+ const a = index.getX(j);
+ const b = index.getX(j + 1);
+ const c = index.getX(j + 2);
+ intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
+
+ if (intersection) {
+ intersection.faceIndex = Math.floor(j / 3); // triangle number in indexed buffer semantics
+
+ intersection.face.materialIndex = group.materialIndex;
+ intersects.push(intersection);
+ }
+ }
+ }
+ } else {
+ const start = Math.max(0, drawRange.start);
+ const end = Math.min(index.count, drawRange.start + drawRange.count);
+
+ for (let i = start, il = end; i < il; i += 3) {
+ const a = index.getX(i);
+ const b = index.getX(i + 1);
+ const c = index.getX(i + 2);
+ intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
+
+ if (intersection) {
+ intersection.faceIndex = Math.floor(i / 3); // triangle number in indexed buffer semantics
+
+ intersects.push(intersection);
+ }
+ }
+ }
+ } else if (position !== undefined) {
+ // non-indexed buffer geometry
+ if (Array.isArray(material)) {
+ for (let i = 0, il = groups.length; i < il; i++) {
+ const group = groups[i];
+ const groupMaterial = material[group.materialIndex];
+ const start = Math.max(group.start, drawRange.start);
+ const end = Math.min(position.count, Math.min(group.start + group.count, drawRange.start + drawRange.count));
+
+ for (let j = start, jl = end; j < jl; j += 3) {
+ const a = j;
+ const b = j + 1;
+ const c = j + 2;
+ intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
+
+ if (intersection) {
+ intersection.faceIndex = Math.floor(j / 3); // triangle number in non-indexed buffer semantics
+
+ intersection.face.materialIndex = group.materialIndex;
+ intersects.push(intersection);
+ }
+ }
+ }
+ } else {
+ const start = Math.max(0, drawRange.start);
+ const end = Math.min(position.count, drawRange.start + drawRange.count);
+
+ for (let i = start, il = end; i < il; i += 3) {
+ const a = i;
+ const b = i + 1;
+ const c = i + 2;
+ intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
+
+ if (intersection) {
+ intersection.faceIndex = Math.floor(i / 3); // triangle number in non-indexed buffer semantics
+
+ intersects.push(intersection);
+ }
+ }
+ }
+ }
+ } else if (geometry.isGeometry) {
+ console.error('THREE.Mesh.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
+ }
+ }
+
+ }
+
+ Mesh.prototype.isMesh = true;
+
+ function checkIntersection(object, material, raycaster, ray, pA, pB, pC, point) {
+ let intersect;
+
+ if (material.side === BackSide) {
+ intersect = ray.intersectTriangle(pC, pB, pA, true, point);
+ } else {
+ intersect = ray.intersectTriangle(pA, pB, pC, material.side !== DoubleSide, point);
+ }
+
+ if (intersect === null) return null;
+
+ _intersectionPointWorld.copy(point);
+
+ _intersectionPointWorld.applyMatrix4(object.matrixWorld);
+
+ const distance = raycaster.ray.origin.distanceTo(_intersectionPointWorld);
+ if (distance < raycaster.near || distance > raycaster.far) return null;
+ return {
+ distance: distance,
+ point: _intersectionPointWorld.clone(),
+ object: object
+ };
+ }
+
+ function checkBufferGeometryIntersection(object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) {
+ _vA$1.fromBufferAttribute(position, a);
+
+ _vB$1.fromBufferAttribute(position, b);
+
+ _vC$1.fromBufferAttribute(position, c);
+
+ const morphInfluences = object.morphTargetInfluences;
+
+ if (morphPosition && morphInfluences) {
+ _morphA.set(0, 0, 0);
+
+ _morphB.set(0, 0, 0);
+
+ _morphC.set(0, 0, 0);
+
+ for (let i = 0, il = morphPosition.length; i < il; i++) {
+ const influence = morphInfluences[i];
+ const morphAttribute = morphPosition[i];
+ if (influence === 0) continue;
+
+ _tempA.fromBufferAttribute(morphAttribute, a);
+
+ _tempB.fromBufferAttribute(morphAttribute, b);
+
+ _tempC.fromBufferAttribute(morphAttribute, c);
+
+ if (morphTargetsRelative) {
+ _morphA.addScaledVector(_tempA, influence);
+
+ _morphB.addScaledVector(_tempB, influence);
+
+ _morphC.addScaledVector(_tempC, influence);
+ } else {
+ _morphA.addScaledVector(_tempA.sub(_vA$1), influence);
+
+ _morphB.addScaledVector(_tempB.sub(_vB$1), influence);
+
+ _morphC.addScaledVector(_tempC.sub(_vC$1), influence);
+ }
+ }
+
+ _vA$1.add(_morphA);
+
+ _vB$1.add(_morphB);
+
+ _vC$1.add(_morphC);
+ }
+
+ if (object.isSkinnedMesh) {
+ object.boneTransform(a, _vA$1);
+ object.boneTransform(b, _vB$1);
+ object.boneTransform(c, _vC$1);
+ }
+
+ const intersection = checkIntersection(object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint);
+
+ if (intersection) {
+ if (uv) {
+ _uvA$1.fromBufferAttribute(uv, a);
+
+ _uvB$1.fromBufferAttribute(uv, b);
+
+ _uvC$1.fromBufferAttribute(uv, c);
+
+ intersection.uv = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2());
+ }
+
+ if (uv2) {
+ _uvA$1.fromBufferAttribute(uv2, a);
+
+ _uvB$1.fromBufferAttribute(uv2, b);
+
+ _uvC$1.fromBufferAttribute(uv2, c);
+
+ intersection.uv2 = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2());
+ }
+
+ const face = {
+ a: a,
+ b: b,
+ c: c,
+ normal: new Vector3(),
+ materialIndex: 0
+ };
+ Triangle.getNormal(_vA$1, _vB$1, _vC$1, face.normal);
+ intersection.face = face;
+ }
+
+ return intersection;
+ }
+
+ class BoxGeometry extends BufferGeometry {
+ constructor(width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1) {
+ super();
+ this.type = 'BoxGeometry';
+ this.parameters = {
+ width: width,
+ height: height,
+ depth: depth,
+ widthSegments: widthSegments,
+ heightSegments: heightSegments,
+ depthSegments: depthSegments
+ };
+ const scope = this; // segments
+
+ widthSegments = Math.floor(widthSegments);
+ heightSegments = Math.floor(heightSegments);
+ depthSegments = Math.floor(depthSegments); // buffers
+
+ const indices = [];
+ const vertices = [];
+ const normals = [];
+ const uvs = []; // helper variables
+
+ let numberOfVertices = 0;
+ let groupStart = 0; // build each side of the box geometry
+
+ buildPlane('z', 'y', 'x', -1, -1, depth, height, width, depthSegments, heightSegments, 0); // px
+
+ buildPlane('z', 'y', 'x', 1, -1, depth, height, -width, depthSegments, heightSegments, 1); // nx
+
+ buildPlane('x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2); // py
+
+ buildPlane('x', 'z', 'y', 1, -1, width, depth, -height, widthSegments, depthSegments, 3); // ny
+
+ buildPlane('x', 'y', 'z', 1, -1, width, height, depth, widthSegments, heightSegments, 4); // pz
+
+ buildPlane('x', 'y', 'z', -1, -1, width, height, -depth, widthSegments, heightSegments, 5); // nz
+ // build geometry
+
+ this.setIndex(indices);
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
+
+ function buildPlane(u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex) {
+ const segmentWidth = width / gridX;
+ const segmentHeight = height / gridY;
+ const widthHalf = width / 2;
+ const heightHalf = height / 2;
+ const depthHalf = depth / 2;
+ const gridX1 = gridX + 1;
+ const gridY1 = gridY + 1;
+ let vertexCounter = 0;
+ let groupCount = 0;
+ const vector = new Vector3(); // generate vertices, normals and uvs
+
+ for (let iy = 0; iy < gridY1; iy++) {
+ const y = iy * segmentHeight - heightHalf;
+
+ for (let ix = 0; ix < gridX1; ix++) {
+ const x = ix * segmentWidth - widthHalf; // set values to correct vector component
+
+ vector[u] = x * udir;
+ vector[v] = y * vdir;
+ vector[w] = depthHalf; // now apply vector to vertex buffer
+
+ vertices.push(vector.x, vector.y, vector.z); // set values to correct vector component
+
+ vector[u] = 0;
+ vector[v] = 0;
+ vector[w] = depth > 0 ? 1 : -1; // now apply vector to normal buffer
+
+ normals.push(vector.x, vector.y, vector.z); // uvs
+
+ uvs.push(ix / gridX);
+ uvs.push(1 - iy / gridY); // counters
+
+ vertexCounter += 1;
+ }
+ } // indices
+ // 1. you need three indices to draw a single face
+ // 2. a single segment consists of two faces
+ // 3. so we need to generate six (2*3) indices per segment
+
+
+ for (let iy = 0; iy < gridY; iy++) {
+ for (let ix = 0; ix < gridX; ix++) {
+ const a = numberOfVertices + ix + gridX1 * iy;
+ const b = numberOfVertices + ix + gridX1 * (iy + 1);
+ const c = numberOfVertices + (ix + 1) + gridX1 * (iy + 1);
+ const d = numberOfVertices + (ix + 1) + gridX1 * iy; // faces
+
+ indices.push(a, b, d);
+ indices.push(b, c, d); // increase counter
+
+ groupCount += 6;
+ }
+ } // add a group to the geometry. this will ensure multi material support
+
+
+ scope.addGroup(groupStart, groupCount, materialIndex); // calculate new start value for groups
+
+ groupStart += groupCount; // update total number of vertices
+
+ numberOfVertices += vertexCounter;
+ }
+ }
+
+ static fromJSON(data) {
+ return new BoxGeometry(data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments);
+ }
+
+ }
+
+ /**
+ * Uniform Utilities
+ */
+ function cloneUniforms(src) {
+ const dst = {};
+
+ for (const u in src) {
+ dst[u] = {};
+
+ for (const p in src[u]) {
+ const property = src[u][p];
+
+ if (property && (property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion)) {
+ dst[u][p] = property.clone();
+ } else if (Array.isArray(property)) {
+ dst[u][p] = property.slice();
+ } else {
+ dst[u][p] = property;
+ }
+ }
+ }
+
+ return dst;
+ }
+ function mergeUniforms(uniforms) {
+ const merged = {};
+
+ for (let u = 0; u < uniforms.length; u++) {
+ const tmp = cloneUniforms(uniforms[u]);
+
+ for (const p in tmp) {
+ merged[p] = tmp[p];
+ }
+ }
+
+ return merged;
+ } // Legacy
+
+ const UniformsUtils = {
+ clone: cloneUniforms,
+ merge: mergeUniforms
+ };
+
+ var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}";
+
+ var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}";
+
+ /**
+ * parameters = {
+ * defines: { "label" : "value" },
+ * uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
+ *
+ * fragmentShader: ,
+ * vertexShader: ,
+ *
+ * wireframe: ,
+ * wireframeLinewidth: ,
+ *
+ * lights:
+ * }
+ */
+
+ class ShaderMaterial extends Material {
+ constructor(parameters) {
+ super();
+ this.type = 'ShaderMaterial';
+ this.defines = {};
+ this.uniforms = {};
+ this.vertexShader = default_vertex;
+ this.fragmentShader = default_fragment;
+ this.linewidth = 1;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.fog = false; // set to use scene fog
+
+ this.lights = false; // set to use scene lights
+
+ this.clipping = false; // set to use user-defined clipping planes
+
+ this.extensions = {
+ derivatives: false,
+ // set to use derivatives
+ fragDepth: false,
+ // set to use fragment depth values
+ drawBuffers: false,
+ // set to use draw buffers
+ shaderTextureLOD: false // set to use shader texture LOD
+
+ }; // When rendered geometry doesn't include these attributes but the material does,
+ // use these default values in WebGL. This avoids errors when buffer data is missing.
+
+ this.defaultAttributeValues = {
+ 'color': [1, 1, 1],
+ 'uv': [0, 0],
+ 'uv2': [0, 0]
+ };
+ this.index0AttributeName = undefined;
+ this.uniformsNeedUpdate = false;
+ this.glslVersion = null;
+
+ if (parameters !== undefined) {
+ if (parameters.attributes !== undefined) {
+ console.error('THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.');
+ }
+
+ this.setValues(parameters);
+ }
+ }
+
+ copy(source) {
+ super.copy(source);
+ this.fragmentShader = source.fragmentShader;
+ this.vertexShader = source.vertexShader;
+ this.uniforms = cloneUniforms(source.uniforms);
+ this.defines = Object.assign({}, source.defines);
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ this.lights = source.lights;
+ this.clipping = source.clipping;
+ this.extensions = Object.assign({}, source.extensions);
+ this.glslVersion = source.glslVersion;
+ return this;
+ }
+
+ toJSON(meta) {
+ const data = super.toJSON(meta);
+ data.glslVersion = this.glslVersion;
+ data.uniforms = {};
+
+ for (const name in this.uniforms) {
+ const uniform = this.uniforms[name];
+ const value = uniform.value;
+
+ if (value && value.isTexture) {
+ data.uniforms[name] = {
+ type: 't',
+ value: value.toJSON(meta).uuid
+ };
+ } else if (value && value.isColor) {
+ data.uniforms[name] = {
+ type: 'c',
+ value: value.getHex()
+ };
+ } else if (value && value.isVector2) {
+ data.uniforms[name] = {
+ type: 'v2',
+ value: value.toArray()
+ };
+ } else if (value && value.isVector3) {
+ data.uniforms[name] = {
+ type: 'v3',
+ value: value.toArray()
+ };
+ } else if (value && value.isVector4) {
+ data.uniforms[name] = {
+ type: 'v4',
+ value: value.toArray()
+ };
+ } else if (value && value.isMatrix3) {
+ data.uniforms[name] = {
+ type: 'm3',
+ value: value.toArray()
+ };
+ } else if (value && value.isMatrix4) {
+ data.uniforms[name] = {
+ type: 'm4',
+ value: value.toArray()
+ };
+ } else {
+ data.uniforms[name] = {
+ value: value
+ }; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far
+ }
+ }
+
+ if (Object.keys(this.defines).length > 0) data.defines = this.defines;
+ data.vertexShader = this.vertexShader;
+ data.fragmentShader = this.fragmentShader;
+ const extensions = {};
+
+ for (const key in this.extensions) {
+ if (this.extensions[key] === true) extensions[key] = true;
+ }
+
+ if (Object.keys(extensions).length > 0) data.extensions = extensions;
+ return data;
+ }
+
+ }
+
+ ShaderMaterial.prototype.isShaderMaterial = true;
+
+ class Camera extends Object3D {
+ constructor() {
+ super();
+ this.type = 'Camera';
+ this.matrixWorldInverse = new Matrix4();
+ this.projectionMatrix = new Matrix4();
+ this.projectionMatrixInverse = new Matrix4();
+ }
+
+ copy(source, recursive) {
+ super.copy(source, recursive);
+ this.matrixWorldInverse.copy(source.matrixWorldInverse);
+ this.projectionMatrix.copy(source.projectionMatrix);
+ this.projectionMatrixInverse.copy(source.projectionMatrixInverse);
+ return this;
+ }
+
+ getWorldDirection(target) {
+ this.updateWorldMatrix(true, false);
+ const e = this.matrixWorld.elements;
+ return target.set(-e[8], -e[9], -e[10]).normalize();
+ }
+
+ updateMatrixWorld(force) {
+ super.updateMatrixWorld(force);
+ this.matrixWorldInverse.copy(this.matrixWorld).invert();
+ }
+
+ updateWorldMatrix(updateParents, updateChildren) {
+ super.updateWorldMatrix(updateParents, updateChildren);
+ this.matrixWorldInverse.copy(this.matrixWorld).invert();
+ }
+
+ clone() {
+ return new this.constructor().copy(this);
+ }
+
+ }
+
+ Camera.prototype.isCamera = true;
+
+ class PerspectiveCamera extends Camera {
+ constructor(fov = 50, aspect = 1, near = 0.1, far = 2000) {
+ super();
+ this.type = 'PerspectiveCamera';
+ this.fov = fov;
+ this.zoom = 1;
+ this.near = near;
+ this.far = far;
+ this.focus = 10;
+ this.aspect = aspect;
+ this.view = null;
+ this.filmGauge = 35; // width of the film (default in millimeters)
+
+ this.filmOffset = 0; // horizontal film offset (same unit as gauge)
+
+ this.updateProjectionMatrix();
+ }
+
+ copy(source, recursive) {
+ super.copy(source, recursive);
+ this.fov = source.fov;
+ this.zoom = source.zoom;
+ this.near = source.near;
+ this.far = source.far;
+ this.focus = source.focus;
+ this.aspect = source.aspect;
+ this.view = source.view === null ? null : Object.assign({}, source.view);
+ this.filmGauge = source.filmGauge;
+ this.filmOffset = source.filmOffset;
+ return this;
+ }
+ /**
+ * Sets the FOV by focal length in respect to the current .filmGauge.
+ *
+ * The default film gauge is 35, so that the focal length can be specified for
+ * a 35mm (full frame) camera.
+ *
+ * Values for focal length and film gauge must have the same unit.
+ */
+
+
+ setFocalLength(focalLength) {
+ /** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */
+ const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
+ this.fov = RAD2DEG * 2 * Math.atan(vExtentSlope);
+ this.updateProjectionMatrix();
+ }
+ /**
+ * Calculates the focal length from the current .fov and .filmGauge.
+ */
+
+
+ getFocalLength() {
+ const vExtentSlope = Math.tan(DEG2RAD * 0.5 * this.fov);
+ return 0.5 * this.getFilmHeight() / vExtentSlope;
+ }
+
+ getEffectiveFOV() {
+ return RAD2DEG * 2 * Math.atan(Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom);
+ }
+
+ getFilmWidth() {
+ // film not completely covered in portrait format (aspect < 1)
+ return this.filmGauge * Math.min(this.aspect, 1);
+ }
+
+ getFilmHeight() {
+ // film not completely covered in landscape format (aspect > 1)
+ return this.filmGauge / Math.max(this.aspect, 1);
+ }
+ /**
+ * Sets an offset in a larger frustum. This is useful for multi-window or
+ * multi-monitor/multi-machine setups.
+ *
+ * For example, if you have 3x2 monitors and each monitor is 1920x1080 and
+ * the monitors are in grid like this
+ *
+ * +---+---+---+
+ * | A | B | C |
+ * +---+---+---+
+ * | D | E | F |
+ * +---+---+---+
+ *
+ * then for each monitor you would call it like this
+ *
+ * const w = 1920;
+ * const h = 1080;
+ * const fullWidth = w * 3;
+ * const fullHeight = h * 2;
+ *
+ * --A--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
+ * --B--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
+ * --C--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
+ * --D--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
+ * --E--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
+ * --F--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
+ *
+ * Note there is no reason monitors have to be the same size or in a grid.
+ */
+
+
+ setViewOffset(fullWidth, fullHeight, x, y, width, height) {
+ this.aspect = fullWidth / fullHeight;
+
+ if (this.view === null) {
+ this.view = {
+ enabled: true,
+ fullWidth: 1,
+ fullHeight: 1,
+ offsetX: 0,
+ offsetY: 0,
+ width: 1,
+ height: 1
+ };
+ }
+
+ this.view.enabled = true;
+ this.view.fullWidth = fullWidth;
+ this.view.fullHeight = fullHeight;
+ this.view.offsetX = x;
+ this.view.offsetY = y;
+ this.view.width = width;
+ this.view.height = height;
+ this.updateProjectionMatrix();
+ }
+
+ clearViewOffset() {
+ if (this.view !== null) {
+ this.view.enabled = false;
+ }
+
+ this.updateProjectionMatrix();
+ }
+
+ updateProjectionMatrix() {
+ const near = this.near;
+ let top = near * Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom;
+ let height = 2 * top;
+ let width = this.aspect * height;
+ let left = -0.5 * width;
+ const view = this.view;
+
+ if (this.view !== null && this.view.enabled) {
+ const fullWidth = view.fullWidth,
+ fullHeight = view.fullHeight;
+ left += view.offsetX * width / fullWidth;
+ top -= view.offsetY * height / fullHeight;
+ width *= view.width / fullWidth;
+ height *= view.height / fullHeight;
+ }
+
+ const skew = this.filmOffset;
+ if (skew !== 0) left += near * skew / this.getFilmWidth();
+ this.projectionMatrix.makePerspective(left, left + width, top, top - height, near, this.far);
+ this.projectionMatrixInverse.copy(this.projectionMatrix).invert();
+ }
+
+ toJSON(meta) {
+ const data = super.toJSON(meta);
+ data.object.fov = this.fov;
+ data.object.zoom = this.zoom;
+ data.object.near = this.near;
+ data.object.far = this.far;
+ data.object.focus = this.focus;
+ data.object.aspect = this.aspect;
+ if (this.view !== null) data.object.view = Object.assign({}, this.view);
+ data.object.filmGauge = this.filmGauge;
+ data.object.filmOffset = this.filmOffset;
+ return data;
+ }
+
+ }
+
+ PerspectiveCamera.prototype.isPerspectiveCamera = true;
+
+ const fov = 90,
+ aspect = 1;
+
+ class CubeCamera extends Object3D {
+ constructor(near, far, renderTarget) {
+ super();
+ this.type = 'CubeCamera';
+
+ if (renderTarget.isWebGLCubeRenderTarget !== true) {
+ console.error('THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.');
+ return;
+ }
+
+ this.renderTarget = renderTarget;
+ const cameraPX = new PerspectiveCamera(fov, aspect, near, far);
+ cameraPX.layers = this.layers;
+ cameraPX.up.set(0, -1, 0);
+ cameraPX.lookAt(new Vector3(1, 0, 0));
+ this.add(cameraPX);
+ const cameraNX = new PerspectiveCamera(fov, aspect, near, far);
+ cameraNX.layers = this.layers;
+ cameraNX.up.set(0, -1, 0);
+ cameraNX.lookAt(new Vector3(-1, 0, 0));
+ this.add(cameraNX);
+ const cameraPY = new PerspectiveCamera(fov, aspect, near, far);
+ cameraPY.layers = this.layers;
+ cameraPY.up.set(0, 0, 1);
+ cameraPY.lookAt(new Vector3(0, 1, 0));
+ this.add(cameraPY);
+ const cameraNY = new PerspectiveCamera(fov, aspect, near, far);
+ cameraNY.layers = this.layers;
+ cameraNY.up.set(0, 0, -1);
+ cameraNY.lookAt(new Vector3(0, -1, 0));
+ this.add(cameraNY);
+ const cameraPZ = new PerspectiveCamera(fov, aspect, near, far);
+ cameraPZ.layers = this.layers;
+ cameraPZ.up.set(0, -1, 0);
+ cameraPZ.lookAt(new Vector3(0, 0, 1));
+ this.add(cameraPZ);
+ const cameraNZ = new PerspectiveCamera(fov, aspect, near, far);
+ cameraNZ.layers = this.layers;
+ cameraNZ.up.set(0, -1, 0);
+ cameraNZ.lookAt(new Vector3(0, 0, -1));
+ this.add(cameraNZ);
+ }
+
+ update(renderer, scene) {
+ if (this.parent === null) this.updateMatrixWorld();
+ const renderTarget = this.renderTarget;
+ const [cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ] = this.children;
+ const currentXrEnabled = renderer.xr.enabled;
+ const currentRenderTarget = renderer.getRenderTarget();
+ renderer.xr.enabled = false;
+ const generateMipmaps = renderTarget.texture.generateMipmaps;
+ renderTarget.texture.generateMipmaps = false;
+ renderer.setRenderTarget(renderTarget, 0);
+ renderer.render(scene, cameraPX);
+ renderer.setRenderTarget(renderTarget, 1);
+ renderer.render(scene, cameraNX);
+ renderer.setRenderTarget(renderTarget, 2);
+ renderer.render(scene, cameraPY);
+ renderer.setRenderTarget(renderTarget, 3);
+ renderer.render(scene, cameraNY);
+ renderer.setRenderTarget(renderTarget, 4);
+ renderer.render(scene, cameraPZ);
+ renderTarget.texture.generateMipmaps = generateMipmaps;
+ renderer.setRenderTarget(renderTarget, 5);
+ renderer.render(scene, cameraNZ);
+ renderer.setRenderTarget(currentRenderTarget);
+ renderer.xr.enabled = currentXrEnabled;
+ }
+
+ }
+
+ class CubeTexture extends Texture {
+ constructor(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) {
+ images = images !== undefined ? images : [];
+ mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
+ super(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
+ this.flipY = false;
+ }
+
+ get images() {
+ return this.image;
+ }
+
+ set images(value) {
+ this.image = value;
+ }
+
+ }
+
+ CubeTexture.prototype.isCubeTexture = true;
+
+ class WebGLCubeRenderTarget extends WebGLRenderTarget {
+ constructor(size, options, dummy) {
+ if (Number.isInteger(options)) {
+ console.warn('THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )');
+ options = dummy;
+ }
+
+ super(size, size, options);
+ options = options || {}; // By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js)
+ // in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words,
+ // in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly.
+ // three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped
+ // and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture
+ // as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures).
+
+ this.texture = new CubeTexture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding);
+ this.texture.isRenderTargetTexture = true;
+ this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
+ this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
+ this.texture._needsFlipEnvMap = false;
+ }
+
+ fromEquirectangularTexture(renderer, texture) {
+ this.texture.type = texture.type;
+ this.texture.format = RGBAFormat; // see #18859
+
+ this.texture.encoding = texture.encoding;
+ this.texture.generateMipmaps = texture.generateMipmaps;
+ this.texture.minFilter = texture.minFilter;
+ this.texture.magFilter = texture.magFilter;
+ const shader = {
+ uniforms: {
+ tEquirect: {
+ value: null
+ }
+ },
+ vertexShader:
+ /* glsl */
+ `
+
+ varying vec3 vWorldDirection;
+
+ vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
+
+ return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
+
+ }
+
+ void main() {
+
+ vWorldDirection = transformDirection( position, modelMatrix );
+
+ #include
+ #include
+
+ }
+ `,
+ fragmentShader:
+ /* glsl */
+ `
+
+ uniform sampler2D tEquirect;
+
+ varying vec3 vWorldDirection;
+
+ #include
+
+ void main() {
+
+ vec3 direction = normalize( vWorldDirection );
+
+ vec2 sampleUV = equirectUv( direction );
+
+ gl_FragColor = texture2D( tEquirect, sampleUV );
+
+ }
+ `
+ };
+ const geometry = new BoxGeometry(5, 5, 5);
+ const material = new ShaderMaterial({
+ name: 'CubemapFromEquirect',
+ uniforms: cloneUniforms(shader.uniforms),
+ vertexShader: shader.vertexShader,
+ fragmentShader: shader.fragmentShader,
+ side: BackSide,
+ blending: NoBlending
+ });
+ material.uniforms.tEquirect.value = texture;
+ const mesh = new Mesh(geometry, material);
+ const currentMinFilter = texture.minFilter; // Avoid blurred poles
+
+ if (texture.minFilter === LinearMipmapLinearFilter) texture.minFilter = LinearFilter;
+ const camera = new CubeCamera(1, 10, this);
+ camera.update(renderer, mesh);
+ texture.minFilter = currentMinFilter;
+ mesh.geometry.dispose();
+ mesh.material.dispose();
+ return this;
+ }
+
+ clear(renderer, color, depth, stencil) {
+ const currentRenderTarget = renderer.getRenderTarget();
+
+ for (let i = 0; i < 6; i++) {
+ renderer.setRenderTarget(this, i);
+ renderer.clear(color, depth, stencil);
+ }
+
+ renderer.setRenderTarget(currentRenderTarget);
+ }
+
+ }
+
+ WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true;
+
+ const _vector1 = /*@__PURE__*/new Vector3();
+
+ const _vector2 = /*@__PURE__*/new Vector3();
+
+ const _normalMatrix = /*@__PURE__*/new Matrix3();
+
+ class Plane {
+ constructor(normal = new Vector3(1, 0, 0), constant = 0) {
+ // normal is assumed to be normalized
+ this.normal = normal;
+ this.constant = constant;
+ }
+
+ set(normal, constant) {
+ this.normal.copy(normal);
+ this.constant = constant;
+ return this;
+ }
+
+ setComponents(x, y, z, w) {
+ this.normal.set(x, y, z);
+ this.constant = w;
+ return this;
+ }
+
+ setFromNormalAndCoplanarPoint(normal, point) {
+ this.normal.copy(normal);
+ this.constant = -point.dot(this.normal);
+ return this;
+ }
+
+ setFromCoplanarPoints(a, b, c) {
+ const normal = _vector1.subVectors(c, b).cross(_vector2.subVectors(a, b)).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
+
+
+ this.setFromNormalAndCoplanarPoint(normal, a);
+ return this;
+ }
+
+ copy(plane) {
+ this.normal.copy(plane.normal);
+ this.constant = plane.constant;
+ return this;
+ }
+
+ normalize() {
+ // Note: will lead to a divide by zero if the plane is invalid.
+ const inverseNormalLength = 1.0 / this.normal.length();
+ this.normal.multiplyScalar(inverseNormalLength);
+ this.constant *= inverseNormalLength;
+ return this;
+ }
+
+ negate() {
+ this.constant *= -1;
+ this.normal.negate();
+ return this;
+ }
+
+ distanceToPoint(point) {
+ return this.normal.dot(point) + this.constant;
+ }
+
+ distanceToSphere(sphere) {
+ return this.distanceToPoint(sphere.center) - sphere.radius;
+ }
+
+ projectPoint(point, target) {
+ return target.copy(this.normal).multiplyScalar(-this.distanceToPoint(point)).add(point);
+ }
+
+ intersectLine(line, target) {
+ const direction = line.delta(_vector1);
+ const denominator = this.normal.dot(direction);
+
+ if (denominator === 0) {
+ // line is coplanar, return origin
+ if (this.distanceToPoint(line.start) === 0) {
+ return target.copy(line.start);
+ } // Unsure if this is the correct method to handle this case.
+
+
+ return null;
+ }
+
+ const t = -(line.start.dot(this.normal) + this.constant) / denominator;
+
+ if (t < 0 || t > 1) {
+ return null;
+ }
+
+ return target.copy(direction).multiplyScalar(t).add(line.start);
+ }
+
+ intersectsLine(line) {
+ // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
+ const startSign = this.distanceToPoint(line.start);
+ const endSign = this.distanceToPoint(line.end);
+ return startSign < 0 && endSign > 0 || endSign < 0 && startSign > 0;
+ }
+
+ intersectsBox(box) {
+ return box.intersectsPlane(this);
+ }
+
+ intersectsSphere(sphere) {
+ return sphere.intersectsPlane(this);
+ }
+
+ coplanarPoint(target) {
+ return target.copy(this.normal).multiplyScalar(-this.constant);
+ }
+
+ applyMatrix4(matrix, optionalNormalMatrix) {
+ const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix(matrix);
+
+ const referencePoint = this.coplanarPoint(_vector1).applyMatrix4(matrix);
+ const normal = this.normal.applyMatrix3(normalMatrix).normalize();
+ this.constant = -referencePoint.dot(normal);
+ return this;
+ }
+
+ translate(offset) {
+ this.constant -= offset.dot(this.normal);
+ return this;
+ }
+
+ equals(plane) {
+ return plane.normal.equals(this.normal) && plane.constant === this.constant;
+ }
+
+ clone() {
+ return new this.constructor().copy(this);
+ }
+
+ }
+
+ Plane.prototype.isPlane = true;
+
+ const _sphere$2 = /*@__PURE__*/new Sphere();
+
+ const _vector$7 = /*@__PURE__*/new Vector3();
+
+ class Frustum {
+ constructor(p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane()) {
+ this.planes = [p0, p1, p2, p3, p4, p5];
+ }
+
+ set(p0, p1, p2, p3, p4, p5) {
+ const planes = this.planes;
+ planes[0].copy(p0);
+ planes[1].copy(p1);
+ planes[2].copy(p2);
+ planes[3].copy(p3);
+ planes[4].copy(p4);
+ planes[5].copy(p5);
+ return this;
+ }
+
+ copy(frustum) {
+ const planes = this.planes;
+
+ for (let i = 0; i < 6; i++) {
+ planes[i].copy(frustum.planes[i]);
+ }
+
+ return this;
+ }
+
+ setFromProjectionMatrix(m) {
+ const planes = this.planes;
+ const me = m.elements;
+ const me0 = me[0],
+ me1 = me[1],
+ me2 = me[2],
+ me3 = me[3];
+ const me4 = me[4],
+ me5 = me[5],
+ me6 = me[6],
+ me7 = me[7];
+ const me8 = me[8],
+ me9 = me[9],
+ me10 = me[10],
+ me11 = me[11];
+ const me12 = me[12],
+ me13 = me[13],
+ me14 = me[14],
+ me15 = me[15];
+ planes[0].setComponents(me3 - me0, me7 - me4, me11 - me8, me15 - me12).normalize();
+ planes[1].setComponents(me3 + me0, me7 + me4, me11 + me8, me15 + me12).normalize();
+ planes[2].setComponents(me3 + me1, me7 + me5, me11 + me9, me15 + me13).normalize();
+ planes[3].setComponents(me3 - me1, me7 - me5, me11 - me9, me15 - me13).normalize();
+ planes[4].setComponents(me3 - me2, me7 - me6, me11 - me10, me15 - me14).normalize();
+ planes[5].setComponents(me3 + me2, me7 + me6, me11 + me10, me15 + me14).normalize();
+ return this;
+ }
+
+ intersectsObject(object) {
+ const geometry = object.geometry;
+ if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
+
+ _sphere$2.copy(geometry.boundingSphere).applyMatrix4(object.matrixWorld);
+
+ return this.intersectsSphere(_sphere$2);
+ }
+
+ intersectsSprite(sprite) {
+ _sphere$2.center.set(0, 0, 0);
+
+ _sphere$2.radius = 0.7071067811865476;
+
+ _sphere$2.applyMatrix4(sprite.matrixWorld);
+
+ return this.intersectsSphere(_sphere$2);
+ }
+
+ intersectsSphere(sphere) {
+ const planes = this.planes;
+ const center = sphere.center;
+ const negRadius = -sphere.radius;
+
+ for (let i = 0; i < 6; i++) {
+ const distance = planes[i].distanceToPoint(center);
+
+ if (distance < negRadius) {
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ intersectsBox(box) {
+ const planes = this.planes;
+
+ for (let i = 0; i < 6; i++) {
+ const plane = planes[i]; // corner at max distance
+
+ _vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x;
+ _vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y;
+ _vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z;
+
+ if (plane.distanceToPoint(_vector$7) < 0) {
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ containsPoint(point) {
+ const planes = this.planes;
+
+ for (let i = 0; i < 6; i++) {
+ if (planes[i].distanceToPoint(point) < 0) {
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ clone() {
+ return new this.constructor().copy(this);
+ }
+
+ }
+
+ function WebGLAnimation() {
+ let context = null;
+ let isAnimating = false;
+ let animationLoop = null;
+ let requestId = null;
+
+ function onAnimationFrame(time, frame) {
+ animationLoop(time, frame);
+ requestId = context.requestAnimationFrame(onAnimationFrame);
+ }
+
+ return {
+ start: function () {
+ if (isAnimating === true) return;
+ if (animationLoop === null) return;
+ requestId = context.requestAnimationFrame(onAnimationFrame);
+ isAnimating = true;
+ },
+ stop: function () {
+ context.cancelAnimationFrame(requestId);
+ isAnimating = false;
+ },
+ setAnimationLoop: function (callback) {
+ animationLoop = callback;
+ },
+ setContext: function (value) {
+ context = value;
+ }
+ };
+ }
+
+ function WebGLAttributes(gl, capabilities) {
+ const isWebGL2 = capabilities.isWebGL2;
+ const buffers = new WeakMap();
+
+ function createBuffer(attribute, bufferType) {
+ const array = attribute.array;
+ const usage = attribute.usage;
+ const buffer = gl.createBuffer();
+ gl.bindBuffer(bufferType, buffer);
+ gl.bufferData(bufferType, array, usage);
+ attribute.onUploadCallback();
+ let type = gl.FLOAT;
+
+ if (array instanceof Float32Array) {
+ type = gl.FLOAT;
+ } else if (array instanceof Float64Array) {
+ console.warn('THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.');
+ } else if (array instanceof Uint16Array) {
+ if (attribute.isFloat16BufferAttribute) {
+ if (isWebGL2) {
+ type = gl.HALF_FLOAT;
+ } else {
+ console.warn('THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2.');
+ }
+ } else {
+ type = gl.UNSIGNED_SHORT;
+ }
+ } else if (array instanceof Int16Array) {
+ type = gl.SHORT;
+ } else if (array instanceof Uint32Array) {
+ type = gl.UNSIGNED_INT;
+ } else if (array instanceof Int32Array) {
+ type = gl.INT;
+ } else if (array instanceof Int8Array) {
+ type = gl.BYTE;
+ } else if (array instanceof Uint8Array) {
+ type = gl.UNSIGNED_BYTE;
+ } else if (array instanceof Uint8ClampedArray) {
+ type = gl.UNSIGNED_BYTE;
+ }
+
+ return {
+ buffer: buffer,
+ type: type,
+ bytesPerElement: array.BYTES_PER_ELEMENT,
+ version: attribute.version
+ };
+ }
+
+ function updateBuffer(buffer, attribute, bufferType) {
+ const array = attribute.array;
+ const updateRange = attribute.updateRange;
+ gl.bindBuffer(bufferType, buffer);
+
+ if (updateRange.count === -1) {
+ // Not using update ranges
+ gl.bufferSubData(bufferType, 0, array);
+ } else {
+ if (isWebGL2) {
+ gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count);
+ } else {
+ gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray(updateRange.offset, updateRange.offset + updateRange.count));
+ }
+
+ updateRange.count = -1; // reset range
+ }
+ } //
+
+
+ function get(attribute) {
+ if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
+ return buffers.get(attribute);
+ }
+
+ function remove(attribute) {
+ if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
+ const data = buffers.get(attribute);
+
+ if (data) {
+ gl.deleteBuffer(data.buffer);
+ buffers.delete(attribute);
+ }
+ }
+
+ function update(attribute, bufferType) {
+ if (attribute.isGLBufferAttribute) {
+ const cached = buffers.get(attribute);
+
+ if (!cached || cached.version < attribute.version) {
+ buffers.set(attribute, {
+ buffer: attribute.buffer,
+ type: attribute.type,
+ bytesPerElement: attribute.elementSize,
+ version: attribute.version
+ });
+ }
+
+ return;
+ }
+
+ if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
+ const data = buffers.get(attribute);
+
+ if (data === undefined) {
+ buffers.set(attribute, createBuffer(attribute, bufferType));
+ } else if (data.version < attribute.version) {
+ updateBuffer(data.buffer, attribute, bufferType);
+ data.version = attribute.version;
+ }
+ }
+
+ return {
+ get: get,
+ remove: remove,
+ update: update
+ };
+ }
+
+ class PlaneGeometry extends BufferGeometry {
+ constructor(width = 1, height = 1, widthSegments = 1, heightSegments = 1) {
+ super();
+ this.type = 'PlaneGeometry';
+ this.parameters = {
+ width: width,
+ height: height,
+ widthSegments: widthSegments,
+ heightSegments: heightSegments
+ };
+ const width_half = width / 2;
+ const height_half = height / 2;
+ const gridX = Math.floor(widthSegments);
+ const gridY = Math.floor(heightSegments);
+ const gridX1 = gridX + 1;
+ const gridY1 = gridY + 1;
+ const segment_width = width / gridX;
+ const segment_height = height / gridY; //
+
+ const indices = [];
+ const vertices = [];
+ const normals = [];
+ const uvs = [];
+
+ for (let iy = 0; iy < gridY1; iy++) {
+ const y = iy * segment_height - height_half;
+
+ for (let ix = 0; ix < gridX1; ix++) {
+ const x = ix * segment_width - width_half;
+ vertices.push(x, -y, 0);
+ normals.push(0, 0, 1);
+ uvs.push(ix / gridX);
+ uvs.push(1 - iy / gridY);
+ }
+ }
+
+ for (let iy = 0; iy < gridY; iy++) {
+ for (let ix = 0; ix < gridX; ix++) {
+ const a = ix + gridX1 * iy;
+ const b = ix + gridX1 * (iy + 1);
+ const c = ix + 1 + gridX1 * (iy + 1);
+ const d = ix + 1 + gridX1 * iy;
+ indices.push(a, b, d);
+ indices.push(b, c, d);
+ }
+ }
+
+ this.setIndex(indices);
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
+ }
+
+ static fromJSON(data) {
+ return new PlaneGeometry(data.width, data.height, data.widthSegments, data.heightSegments);
+ }
+
+ }
+
+ var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif";
+
+ var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
+
+ var alphatest_fragment = "#ifdef USE_ALPHATEST\n\tif ( diffuseColor.a < alphaTest ) discard;\n#endif";
+
+ var alphatest_pars_fragment = "#ifdef USE_ALPHATEST\n\tuniform float alphaTest;\n#endif";
+
+ var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );\n\t#endif\n#endif";
+
+ var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif";
+
+ var begin_vertex = "vec3 transformed = vec3( position );";
+
+ var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif";
+
+ var bsdfs = "vec3 BRDF_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nfloat V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( f0, f90, dotVH );\n\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( V * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, 1.0, dotVH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float dotNH ) {\n\tfloat alpha = pow2( roughness );\n\tfloat invAlpha = 1.0 / alpha;\n\tfloat cos2h = dotNH * dotNH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float dotNV, float dotNL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );\n}\nvec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat D = D_Charlie( sheenRoughness, dotNH );\n\tfloat V = V_Neubelt( dotNV, dotNL );\n\treturn sheenColor * ( D * V );\n}\n#endif";
+
+ var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif";
+
+ var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif";
+
+ var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif";
+
+ var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif";
+
+ var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif";
+
+ var color_fragment = "#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif";
+
+ var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif";
+
+ var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif";
+
+ var color_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif";
+
+ var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}";
+
+ var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_maxMipLevel 8.0\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_maxTileSize 256.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tfloat texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 1.0 ) + 0.5;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tif ( mipInt < cubeUV_maxMipLevel ) {\n\t\t\tuv.y += 2.0 * cubeUV_maxTileSize;\n\t\t}\n\t\tuv.y += filterInt * 2.0 * cubeUV_minTileSize;\n\t\tuv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n\t\tuv *= texelSize;\n\t\treturn texture2D( envMap, uv ).rgb;\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif";
+
+ var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif";
+
+ var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif";
+
+ var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif";
+
+ var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif";
+
+ var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif";
+
+ var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );";
+
+ var encodings_pars_fragment = "vec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}";
+
+ var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif";
+
+ var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif";
+
+ var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif";
+
+ var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif";
+
+ var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif";
+
+ var fog_vertex = "#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif";
+
+ var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif";
+
+ var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif";
+
+ var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif";
+
+ var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn vec3( texture2D( gradientMap, coord ).r );\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}";
+
+ var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tlightMapIrradiance *= PI;\n\t#endif\n\treflectedLight.indirectDiffuse += lightMapIrradiance;\n#endif";
+
+ var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif";
+
+ var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry.normal );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry.normal );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointLightInfo( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotLightInfo( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalLightInfo( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry.normal );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif";
+
+ var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {\n\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\t#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tif ( cutoffDistance > 0.0 ) {\n\t\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\t}\n\t\treturn distanceFalloff;\n\t#else\n\t\tif ( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\t\treturn pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t\t}\n\t\treturn 1.0;\n\t#endif\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {\n\t\tfloat dotNL = dot( normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif";
+
+ var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getIBLIrradiance( const in vec3 normal ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 reflectVec;\n\t\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\t\treflectVec = reflect( - viewDir, normal );\n\t\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\t#else\n\t\t\t\treflectVec = refract( - viewDir, normal, refractionRatio );\n\t\t\t#endif\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n#endif";
+
+ var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;";
+
+ var lights_toon_pars_fragment = "varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)";
+
+ var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;";
+
+ var lights_phong_pars_fragment = "varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)";
+
+ var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\t#ifdef SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularColorFactor = specularColor;\n\t\t#ifdef USE_SPECULARINTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vUv ).a;\n\t\t#endif\n\t\t#ifdef USE_SPECULARCOLORMAP\n\t\t\tspecularColorFactor *= specularColorMapTexelToLinear( texture2D( specularColorMap, vUv ) ).rgb;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularColorFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( ior - 1.0 ) / ( ior + 1.0 ) ) * specularColorFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheenColor;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tmaterial.sheenColor *= sheenColorMapTexelToLinear( texture2D( sheenColorMap, vUv ) ).rgb;\n\t#endif\n\tmaterial.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tmaterial.sheenRoughness *= texture2D( sheenRoughnessMap, vUv ).a;\n\t#endif\n#endif";
+
+ var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenColor;\n\t\tfloat sheenRoughness;\n\t#endif\n};\nvec3 clearcoatSpecular = vec3( 0.0 );\nvec3 sheenSpecular = vec3( 0.0 );\nfloat IBLSheenBRDF( const in vec3 normal, const in vec3 viewDir, const in float roughness) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat r2 = roughness * roughness;\n\tfloat a = roughness < 0.25 ? -339.2 * r2 + 161.4 * roughness - 25.9 : -8.48 * r2 + 14.3 * roughness - 9.95;\n\tfloat b = roughness < 0.25 ? 44.0 * r2 - 23.7 * roughness + 3.26 : 1.97 * r2 - 3.27 * roughness + 0.72;\n\tfloat DG = exp( a * dotNV + b ) + ( roughness < 0.25 ? 0.0 : 0.1 * ( roughness - 0.25 ) );\n\treturn saturate( DG * RECIPROCAL_PI );\n}\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\tvec3 FssEss = specularColor * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecular += ccIrradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.clearcoatNormal, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecular += irradiance * BRDF_Sheen( directLight.direction, geometry.viewDir, geometry.normal, material.sheenColor, material.sheenRoughness );\n\t#endif\n\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness );\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecular += irradiance * material.sheenColor * IBLSheenBRDF( geometry.normal, geometry.viewDir, material.sheenRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tcomputeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}";
+
+ var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef USE_CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry.normal );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif";
+
+ var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometry.normal );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getIBLRadiance( geometry.viewDir, geometry.normal, material.roughness );\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif";
+
+ var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif";
+
+ var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif";
+
+ var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif";
+
+ var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif";
+
+ var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif";
+
+ var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif";
+
+ var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif";
+
+ var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif";
+
+ var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
+
+ var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif";
+
+ var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif";
+
+ var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1, 2 ) * morphTargetInfluences[ i ];\n\t\t}\n\t#else\n\t\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\t\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\t\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\t\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n\t#endif\n#endif";
+
+ var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tuniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\t\tuniform sampler2DArray morphTargetsTexture;\n\t\tuniform vec2 morphTargetsTextureSize;\n\t\tvec3 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset, const in int stride ) {\n\t\t\tfloat texelIndex = float( vertexIndex * stride + offset );\n\t\t\tfloat y = floor( texelIndex / morphTargetsTextureSize.x );\n\t\t\tfloat x = texelIndex - y * morphTargetsTextureSize.x;\n\t\t\tvec3 morphUV = vec3( ( x + 0.5 ) / morphTargetsTextureSize.x, y / morphTargetsTextureSize.y, morphTargetIndex );\n\t\t\treturn texture( morphTargetsTexture, morphUV ).xyz;\n\t\t}\n\t#else\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\tuniform float morphTargetInfluences[ 8 ];\n\t\t#else\n\t\t\tuniform float morphTargetInfluences[ 4 ];\n\t\t#endif\n\t#endif\n#endif";
+
+ var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\t#ifndef USE_MORPHNORMALS\n\t\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 1 ) * morphTargetInfluences[ i ];\n\t\t\t#else\n\t\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 2 ) * morphTargetInfluences[ i ];\n\t\t\t#endif\n\t\t}\n\t#else\n\t\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\t\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\t\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\t\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t\t#endif\n\t#endif\n#endif";
+
+ var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * faceDirection;\n\t\t\tbitangent = bitangent * faceDirection;\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;";
+
+ var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( - vViewPosition, normal, mapN, faceDirection );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif";
+
+ var normal_pars_fragment = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif";
+
+ var normal_pars_vertex = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif";
+
+ var normal_vertex = "#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif";
+
+ var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det );\n\t\treturn normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z );\n\t}\n#endif";
+
+ var clearcoat_normal_fragment_begin = "#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif";
+
+ var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );\n\t#endif\n#endif";
+
+ var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif";
+
+ var output_fragment = "#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= transmissionAlpha + 0.1;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );";
+
+ var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}";
+
+ var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif";
+
+ var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;";
+
+ var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif";
+
+ var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif";
+
+ var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif";
+
+ var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif";
+
+ var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif";
+
+ var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif";
+
+ var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif";
+
+ var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}";
+
+ var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";
+
+ var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif";
+
+ var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif";
+
+ var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif";
+
+ var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif";
+
+ var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif";
+
+ var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif";
+
+ var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }";
+
+ var transmission_fragment = "#ifdef USE_TRANSMISSION\n\tfloat transmissionAlpha = 1.0;\n\tfloat transmissionFactor = transmission;\n\tfloat thicknessFactor = thickness;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\ttransmissionFactor *= texture2D( transmissionMap, vUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tthicknessFactor *= texture2D( thicknessMap, vUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmission = getIBLVolumeRefraction(\n\t\tn, v, roughnessFactor, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor,\n\t\tattenuationColor, attenuationDistance );\n\ttotalDiffuse = mix( totalDiffuse, transmission.rgb, transmissionFactor );\n\ttransmissionAlpha = mix( transmissionAlpha, transmission.a, transmissionFactor );\n#endif";
+
+ var transmission_pars_fragment = "#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationColor;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tvec3 getVolumeTransmissionRay( vec3 n, vec3 v, float thickness, float ior, mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( float roughness, float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( vec2 fragCoord, float roughness, float ior ) {\n\t\tfloat framebufferLod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\treturn texture2DLodEXT( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#else\n\t\t\treturn texture2D( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#endif\n\t}\n\tvec3 applyVolumeAttenuation( vec3 radiance, float transmissionDistance, vec3 attenuationColor, float attenuationDistance ) {\n\t\tif ( attenuationDistance == 0.0 ) {\n\t\t\treturn radiance;\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance * radiance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( vec3 n, vec3 v, float roughness, vec3 diffuseColor, vec3 specularColor, float specularF90,\n\t\tvec3 position, mat4 modelMatrix, mat4 viewMatrix, mat4 projMatrix, float ior, float thickness,\n\t\tvec3 attenuationColor, float attenuationDistance ) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\tvec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a );\n\t}\n#endif";
+
+ var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif";
+
+ var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif";
+
+ var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif";
+
+ var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif";
+
+ var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif";
+
+ var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif";
+
+ var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif";
+
+ const vertex$g = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}";
+ const fragment$g = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}";
+
+ const vertex$f = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}";
+ const fragment$f = "#include \nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include \n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}";
+
+ const vertex$e = "#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}";
+ const fragment$e = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}";
+
+ const vertex$d = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}";
+ const fragment$d = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}";
+
+ const vertex$c = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}";
+ const fragment$c = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}";
+
+ const vertex$b = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
+ const fragment$b = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
+
+ const vertex$a = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
+ const fragment$a = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
+
+ const vertex$9 = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
+ const fragment$9 = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= BRDF_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include