Dies ist das Repository meines kleinen Portfolios. Im Hintergrund läuft eine Planetensimulation, geschrieben in JavaScript und Three.js. Die zu sehenden Texturen stammen von: https://www.solarsystemscope.com/textures/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

1929 lines
46 KiB

( function () {
// Note: "MATERIAL" tag (e.g. GLITTER, SPECKLE) is not implemented
const FINISH_TYPE_DEFAULT = 0;
const FINISH_TYPE_CHROME = 1;
const FINISH_TYPE_PEARLESCENT = 2;
const FINISH_TYPE_RUBBER = 3;
const FINISH_TYPE_MATTE_METALLIC = 4;
const FINISH_TYPE_METAL = 5; // State machine to search a subobject path.
// The LDraw standard establishes these various possible subfolders.
const FILE_LOCATION_AS_IS = 0;
const FILE_LOCATION_TRY_PARTS = 1;
const FILE_LOCATION_TRY_P = 2;
const FILE_LOCATION_TRY_MODELS = 3;
const FILE_LOCATION_TRY_RELATIVE = 4;
const FILE_LOCATION_TRY_ABSOLUTE = 5;
const FILE_LOCATION_NOT_FOUND = 6;
const _tempVec0 = new THREE.Vector3();
const _tempVec1 = new THREE.Vector3();
class LDrawConditionalLineMaterial extends THREE.ShaderMaterial {
constructor( parameters ) {
super( {
uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib.fog, {
diffuse: {
value: new THREE.Color()
},
opacity: {
value: 1.0
}
} ] ),
vertexShader:
/* glsl */
`
attribute vec3 control0;
attribute vec3 control1;
attribute vec3 direction;
varying float discardFlag;
#include <common>
#include <color_pars_vertex>
#include <fog_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
void main() {
#include <color_vertex>
vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
gl_Position = projectionMatrix * mvPosition;
// Transform the line segment ends and control points into camera clip space
vec4 c0 = projectionMatrix * modelViewMatrix * vec4( control0, 1.0 );
vec4 c1 = projectionMatrix * modelViewMatrix * vec4( control1, 1.0 );
vec4 p0 = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
vec4 p1 = projectionMatrix * modelViewMatrix * vec4( position + direction, 1.0 );
c0.xy /= c0.w;
c1.xy /= c1.w;
p0.xy /= p0.w;
p1.xy /= p1.w;
// Get the direction of the segment and an orthogonal vector
vec2 dir = p1.xy - p0.xy;
vec2 norm = vec2( -dir.y, dir.x );
// Get control point directions from the line
vec2 c0dir = c0.xy - p1.xy;
vec2 c1dir = c1.xy - p1.xy;
// If the vectors to the controls points are pointed in different directions away
// from the line segment then the line should not be drawn.
float d0 = dot( normalize( norm ), normalize( c0dir ) );
float d1 = dot( normalize( norm ), normalize( c1dir ) );
discardFlag = float( sign( d0 ) != sign( d1 ) );
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
#include <fog_vertex>
}
`,
fragmentShader:
/* glsl */
`
uniform vec3 diffuse;
uniform float opacity;
varying float discardFlag;
#include <common>
#include <color_pars_fragment>
#include <fog_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
void main() {
if ( discardFlag > 0.5 ) discard;
#include <clipping_planes_fragment>
vec3 outgoingLight = vec3( 0.0 );
vec4 diffuseColor = vec4( diffuse, opacity );
#include <logdepthbuf_fragment>
#include <color_fragment>
outgoingLight = diffuseColor.rgb; // simple shader
gl_FragColor = vec4( outgoingLight, diffuseColor.a );
#include <tonemapping_fragment>
#include <encodings_fragment>
#include <fog_fragment>
#include <premultiplied_alpha_fragment>
}
`
} );
Object.defineProperties( this, {
opacity: {
get: function () {
return this.uniforms.opacity.value;
},
set: function ( value ) {
this.uniforms.opacity.value = value;
}
},
color: {
get: function () {
return this.uniforms.diffuse.value;
}
}
} );
this.setValues( parameters );
this.isLDrawConditionalLineMaterial = true;
}
}
function smoothNormals( faces, lineSegments ) {
function hashVertex( v ) {
// NOTE: 1e2 is pretty coarse but was chosen because it allows edges
// to be smoothed as expected (see minifig arms). The errors between edges
// could be due to matrix multiplication.
const x = ~ ~ ( v.x * 1e2 );
const y = ~ ~ ( v.y * 1e2 );
const z = ~ ~ ( v.z * 1e2 );
return `${x},${y},${z}`;
}
function hashEdge( v0, v1 ) {
return `${hashVertex( v0 )}_${hashVertex( v1 )}`;
}
const hardEdges = new Set();
const halfEdgeList = {};
const normals = []; // Save the list of hard edges by hash
for ( let i = 0, l = lineSegments.length; i < l; i ++ ) {
const ls = lineSegments[ i ];
const vertices = ls.vertices;
const v0 = vertices[ 0 ];
const v1 = vertices[ 1 ];
hardEdges.add( hashEdge( v0, v1 ) );
hardEdges.add( hashEdge( v1, v0 ) );
} // track the half edges associated with each triangle
for ( let i = 0, l = faces.length; i < l; i ++ ) {
const tri = faces[ i ];
const vertices = tri.vertices;
const vertCount = vertices.length;
for ( let i2 = 0; i2 < vertCount; i2 ++ ) {
const index = i2;
const next = ( i2 + 1 ) % vertCount;
const v0 = vertices[ index ];
const v1 = vertices[ next ];
const hash = hashEdge( v0, v1 ); // don't add the triangle if the edge is supposed to be hard
if ( hardEdges.has( hash ) ) continue;
const info = {
index: index,
tri: tri
};
halfEdgeList[ hash ] = info;
}
} // Iterate until we've tried to connect all faces to share normals
while ( true ) {
// Stop if there are no more faces left
let halfEdge = null;
for ( const key in halfEdgeList ) {
halfEdge = halfEdgeList[ key ];
break;
}
if ( halfEdge === null ) {
break;
} // Exhaustively find all connected faces
const queue = [ halfEdge ];
while ( queue.length > 0 ) {
// initialize all vertex normals in this triangle
const tri = queue.pop().tri;
const vertices = tri.vertices;
const vertNormals = tri.normals;
const faceNormal = tri.faceNormal; // Check if any edge is connected to another triangle edge
const vertCount = vertices.length;
for ( let i2 = 0; i2 < vertCount; i2 ++ ) {
const index = i2;
const next = ( i2 + 1 ) % vertCount;
const v0 = vertices[ index ];
const v1 = vertices[ next ]; // delete this triangle from the list so it won't be found again
const hash = hashEdge( v0, v1 );
delete halfEdgeList[ hash ];
const reverseHash = hashEdge( v1, v0 );
const otherInfo = halfEdgeList[ reverseHash ];
if ( otherInfo ) {
const otherTri = otherInfo.tri;
const otherIndex = otherInfo.index;
const otherNormals = otherTri.normals;
const otherVertCount = otherNormals.length;
const otherFaceNormal = otherTri.faceNormal; // NOTE: If the angle between faces is > 67.5 degrees then assume it's
// hard edge. There are some cases where the line segments do not line up exactly
// with or span multiple triangle edges (see Lunar Vehicle wheels).
if ( Math.abs( otherTri.faceNormal.dot( tri.faceNormal ) ) < 0.25 ) {
continue;
} // if this triangle has already been traversed then it won't be in
// the halfEdgeList. If it has not then add it to the queue and delete
// it so it won't be found again.
if ( reverseHash in halfEdgeList ) {
queue.push( otherInfo );
delete halfEdgeList[ reverseHash ];
} // share the first normal
const otherNext = ( otherIndex + 1 ) % otherVertCount;
if ( vertNormals[ index ] && otherNormals[ otherNext ] && vertNormals[ index ] !== otherNormals[ otherNext ] ) {
otherNormals[ otherNext ].norm.add( vertNormals[ index ].norm );
vertNormals[ index ].norm = otherNormals[ otherNext ].norm;
}
let sharedNormal1 = vertNormals[ index ] || otherNormals[ otherNext ];
if ( sharedNormal1 === null ) {
// it's possible to encounter an edge of a triangle that has already been traversed meaning
// both edges already have different normals defined and shared. To work around this we create
// a wrapper object so when those edges are merged the normals can be updated everywhere.
sharedNormal1 = {
norm: new THREE.Vector3()
};
normals.push( sharedNormal1.norm );
}
if ( vertNormals[ index ] === null ) {
vertNormals[ index ] = sharedNormal1;
sharedNormal1.norm.add( faceNormal );
}
if ( otherNormals[ otherNext ] === null ) {
otherNormals[ otherNext ] = sharedNormal1;
sharedNormal1.norm.add( otherFaceNormal );
} // share the second normal
if ( vertNormals[ next ] && otherNormals[ otherIndex ] && vertNormals[ next ] !== otherNormals[ otherIndex ] ) {
otherNormals[ otherIndex ].norm.add( vertNormals[ next ].norm );
vertNormals[ next ].norm = otherNormals[ otherIndex ].norm;
}
let sharedNormal2 = vertNormals[ next ] || otherNormals[ otherIndex ];
if ( sharedNormal2 === null ) {
sharedNormal2 = {
norm: new THREE.Vector3()
};
normals.push( sharedNormal2.norm );
}
if ( vertNormals[ next ] === null ) {
vertNormals[ next ] = sharedNormal2;
sharedNormal2.norm.add( faceNormal );
}
if ( otherNormals[ otherIndex ] === null ) {
otherNormals[ otherIndex ] = sharedNormal2;
sharedNormal2.norm.add( otherFaceNormal );
}
}
}
}
} // The normals of each face have been added up so now we average them by normalizing the vector.
for ( let i = 0, l = normals.length; i < l; i ++ ) {
normals[ i ].normalize();
}
}
function isPartType( type ) {
return type === 'Part';
}
function isModelType( type ) {
return type === 'Model' || type === 'Unofficial_Model';
}
function isPrimitiveType( type ) {
return /primitive/i.test( type ) || type === 'Subpart';
}
class LineParser {
constructor( line, lineNumber ) {
this.line = line;
this.lineLength = line.length;
this.currentCharIndex = 0;
this.currentChar = ' ';
this.lineNumber = lineNumber;
}
seekNonSpace() {
while ( this.currentCharIndex < this.lineLength ) {
this.currentChar = this.line.charAt( this.currentCharIndex );
if ( this.currentChar !== ' ' && this.currentChar !== '\t' ) {
return;
}
this.currentCharIndex ++;
}
}
getToken() {
const pos0 = this.currentCharIndex ++; // Seek space
while ( this.currentCharIndex < this.lineLength ) {
this.currentChar = this.line.charAt( this.currentCharIndex );
if ( this.currentChar === ' ' || this.currentChar === '\t' ) {
break;
}
this.currentCharIndex ++;
}
const pos1 = this.currentCharIndex;
this.seekNonSpace();
return this.line.substring( pos0, pos1 );
}
getRemainingString() {
return this.line.substring( this.currentCharIndex, this.lineLength );
}
isAtTheEnd() {
return this.currentCharIndex >= this.lineLength;
}
setToEnd() {
this.currentCharIndex = this.lineLength;
}
getLineNumberString() {
return this.lineNumber >= 0 ? ' at line ' + this.lineNumber : '';
}
}
class LDrawFileCache {
constructor( loader ) {
this.cache = {};
this.loader = loader;
}
setData( key, contents ) {
this.cache[ key.toLowerCase() ] = contents;
}
async loadData( fileName ) {
const key = fileName.toLowerCase();
if ( key in this.cache ) {
return this.cache[ key ];
}
this.cache[ fileName ] = new Promise( async ( resolve, reject ) => {
let triedLowerCase = false;
let locationState = FILE_LOCATION_AS_IS;
while ( locationState !== FILE_LOCATION_NOT_FOUND ) {
let subobjectURL = fileName;
switch ( locationState ) {
case FILE_LOCATION_AS_IS:
locationState = locationState + 1;
break;
case FILE_LOCATION_TRY_PARTS:
subobjectURL = 'parts/' + subobjectURL;
locationState = locationState + 1;
break;
case FILE_LOCATION_TRY_P:
subobjectURL = 'p/' + subobjectURL;
locationState = locationState + 1;
break;
case FILE_LOCATION_TRY_MODELS:
subobjectURL = 'models/' + subobjectURL;
locationState = locationState + 1;
break;
case FILE_LOCATION_TRY_RELATIVE:
subobjectURL = fileName.substring( 0, fileName.lastIndexOf( '/' ) + 1 ) + subobjectURL;
locationState = locationState + 1;
break;
case FILE_LOCATION_TRY_ABSOLUTE:
if ( triedLowerCase ) {
// Try absolute path
locationState = FILE_LOCATION_NOT_FOUND;
} else {
// Next attempt is lower case
fileName = fileName.toLowerCase();
subobjectURL = fileName;
triedLowerCase = true;
locationState = FILE_LOCATION_AS_IS;
}
break;
}
const loader = this.loader;
const fileLoader = new THREE.FileLoader( loader.manager );
fileLoader.setPath( loader.partsLibraryPath );
fileLoader.setRequestHeader( loader.requestHeader );
fileLoader.setWithCredentials( loader.withCredentials );
try {
const text = await fileLoader.loadAsync( subobjectURL );
this.setData( fileName, text );
resolve( text );
return;
} catch {
continue;
}
}
reject();
} );
return this.cache[ fileName ];
}
}
function sortByMaterial( a, b ) {
if ( a.colourCode === b.colourCode ) {
return 0;
}
if ( a.colourCode < b.colourCode ) {
return - 1;
}
return 1;
}
function createObject( elements, elementSize, isConditionalSegments = false, totalElements = null ) {
// Creates a THREE.LineSegments (elementSize = 2) or a THREE.Mesh (elementSize = 3 )
// With per face / segment material, implemented with mesh groups and materials array
// Sort the faces or line segments by colour code to make later the mesh groups
elements.sort( sortByMaterial );
if ( totalElements === null ) {
totalElements = elements.length;
}
const positions = new Float32Array( elementSize * totalElements * 3 );
const normals = elementSize === 3 ? new Float32Array( elementSize * totalElements * 3 ) : null;
const materials = [];
const quadArray = new Array( 6 );
const bufferGeometry = new THREE.BufferGeometry();
let prevMaterial = null;
let index0 = 0;
let numGroupVerts = 0;
let offset = 0;
for ( let iElem = 0, nElem = elements.length; iElem < nElem; iElem ++ ) {
const elem = elements[ iElem ];
let vertices = elem.vertices;
if ( vertices.length === 4 ) {
quadArray[ 0 ] = vertices[ 0 ];
quadArray[ 1 ] = vertices[ 1 ];
quadArray[ 2 ] = vertices[ 2 ];
quadArray[ 3 ] = vertices[ 0 ];
quadArray[ 4 ] = vertices[ 2 ];
quadArray[ 5 ] = vertices[ 3 ];
vertices = quadArray;
}
for ( let j = 0, l = vertices.length; j < l; j ++ ) {
const v = vertices[ j ];
const index = offset + j * 3;
positions[ index + 0 ] = v.x;
positions[ index + 1 ] = v.y;
positions[ index + 2 ] = v.z;
}
if ( elementSize === 3 ) {
let elemNormals = elem.normals;
if ( elemNormals.length === 4 ) {
quadArray[ 0 ] = elemNormals[ 0 ];
quadArray[ 1 ] = elemNormals[ 1 ];
quadArray[ 2 ] = elemNormals[ 2 ];
quadArray[ 3 ] = elemNormals[ 0 ];
quadArray[ 4 ] = elemNormals[ 2 ];
quadArray[ 5 ] = elemNormals[ 3 ];
elemNormals = quadArray;
}
for ( let j = 0, l = elemNormals.length; j < l; j ++ ) {
let n = elem.faceNormal;
if ( elemNormals[ j ] ) {
n = elemNormals[ j ].norm;
}
const index = offset + j * 3;
normals[ index + 0 ] = n.x;
normals[ index + 1 ] = n.y;
normals[ index + 2 ] = n.z;
}
}
if ( prevMaterial !== elem.material ) {
if ( prevMaterial !== null ) {
bufferGeometry.addGroup( index0, numGroupVerts, materials.length - 1 );
}
materials.push( elem.material );
prevMaterial = elem.material;
index0 = offset / 3;
numGroupVerts = vertices.length;
} else {
numGroupVerts += vertices.length;
}
offset += 3 * vertices.length;
}
if ( numGroupVerts > 0 ) {
bufferGeometry.addGroup( index0, Infinity, materials.length - 1 );
}
bufferGeometry.setAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) );
if ( normals !== null ) {
bufferGeometry.setAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) );
}
let object3d = null;
if ( elementSize === 2 ) {
object3d = new THREE.LineSegments( bufferGeometry, materials.length === 1 ? materials[ 0 ] : materials );
} else if ( elementSize === 3 ) {
object3d = new THREE.Mesh( bufferGeometry, materials.length === 1 ? materials[ 0 ] : materials );
}
if ( isConditionalSegments ) {
object3d.isConditionalLine = true;
const controlArray0 = new Float32Array( elements.length * 3 * 2 );
const controlArray1 = new Float32Array( elements.length * 3 * 2 );
const directionArray = new Float32Array( elements.length * 3 * 2 );
for ( let i = 0, l = elements.length; i < l; i ++ ) {
const os = elements[ i ];
const vertices = os.vertices;
const controlPoints = os.controlPoints;
const c0 = controlPoints[ 0 ];
const c1 = controlPoints[ 1 ];
const v0 = vertices[ 0 ];
const v1 = vertices[ 1 ];
const index = i * 3 * 2;
controlArray0[ index + 0 ] = c0.x;
controlArray0[ index + 1 ] = c0.y;
controlArray0[ index + 2 ] = c0.z;
controlArray0[ index + 3 ] = c0.x;
controlArray0[ index + 4 ] = c0.y;
controlArray0[ index + 5 ] = c0.z;
controlArray1[ index + 0 ] = c1.x;
controlArray1[ index + 1 ] = c1.y;
controlArray1[ index + 2 ] = c1.z;
controlArray1[ index + 3 ] = c1.x;
controlArray1[ index + 4 ] = c1.y;
controlArray1[ index + 5 ] = c1.z;
directionArray[ index + 0 ] = v1.x - v0.x;
directionArray[ index + 1 ] = v1.y - v0.y;
directionArray[ index + 2 ] = v1.z - v0.z;
directionArray[ index + 3 ] = v1.x - v0.x;
directionArray[ index + 4 ] = v1.y - v0.y;
directionArray[ index + 5 ] = v1.z - v0.z;
}
bufferGeometry.setAttribute( 'control0', new THREE.BufferAttribute( controlArray0, 3, false ) );
bufferGeometry.setAttribute( 'control1', new THREE.BufferAttribute( controlArray1, 3, false ) );
bufferGeometry.setAttribute( 'direction', new THREE.BufferAttribute( directionArray, 3, false ) );
}
return object3d;
} //
class LDrawLoader extends THREE.Loader {
constructor( manager ) {
super( manager ); // Array of THREE.Material
this.materials = []; // Not using THREE.Cache here because it returns the previous HTML error response instead of calling onError()
// This also allows to handle the embedded text files ("0 FILE" lines)
this.cache = new LDrawFileCache( this ); // This object is a map from file names to paths. It agilizes the paths search. If it is not set then files will be searched by trial and error.
this.fileMap = null;
this.rootParseScope = this.newParseScopeLevel(); // Add default main triangle and line edge materials (used in pieces that can be coloured with a main color)
this.setMaterials( [ this.parseColourMetaDirective( new LineParser( 'Main_Colour CODE 16 VALUE #FF8080 EDGE #333333' ) ), this.parseColourMetaDirective( new LineParser( 'Edge_Colour CODE 24 VALUE #A0A0A0 EDGE #333333' ) ) ] ); // If this flag is set to true, each subobject will be a Object.
// If not (the default), only one object which contains all the merged primitives will be created.
this.separateObjects = false; // If this flag is set to true the vertex normals will be smoothed.
this.smoothNormals = true; // The path to load parts from the LDraw parts library from.
this.partsLibraryPath = '';
}
setPartsLibraryPath( path ) {
this.partsLibraryPath = path;
return this;
}
async preloadMaterials( url ) {
const fileLoader = new THREE.FileLoader( this.manager );
fileLoader.setPath( this.path );
fileLoader.setRequestHeader( this.requestHeader );
fileLoader.setWithCredentials( this.withCredentials );
const text = await fileLoader.loadAsync( url );
const colorLineRegex = /^0 !COLOUR/;
const lines = text.split( /[\n\r]/g );
const materials = [];
for ( let i = 0, l = lines.length; i < l; i ++ ) {
const line = lines[ i ];
if ( colorLineRegex.test( line ) ) {
const directive = line.replace( colorLineRegex, '' );
const material = this.parseColourMetaDirective( new LineParser( directive ) );
materials.push( material );
}
}
this.setMaterials( materials );
}
load( url, onLoad, onProgress, onError ) {
if ( ! this.fileMap ) {
this.fileMap = {};
}
const fileLoader = new THREE.FileLoader( this.manager );
fileLoader.setPath( this.path );
fileLoader.setRequestHeader( this.requestHeader );
fileLoader.setWithCredentials( this.withCredentials );
fileLoader.load( url, text => {
this.processObject( text, null, url, this.rootParseScope ).then( function ( result ) {
onLoad( result.groupObject );
} );
}, onProgress, onError );
}
parse( text, path, onLoad ) {
// Async parse. This function calls onParse with the parsed THREE.Object3D as parameter
this.processObject( text, null, path, this.rootParseScope ).then( function ( result ) {
onLoad( result.groupObject );
} );
}
setMaterials( materials ) {
// Clears parse scopes stack, adds new scope with material library
this.rootParseScope = this.newParseScopeLevel( materials );
this.rootParseScope.isFromParse = false;
this.materials = materials;
return this;
}
setFileMap( fileMap ) {
this.fileMap = fileMap;
return this;
}
newParseScopeLevel( materials = null, parentScope = null ) {
// Adds a new scope level, assign materials to it and returns it
const matLib = {};
if ( materials ) {
for ( let i = 0, n = materials.length; i < n; i ++ ) {
const material = materials[ i ];
matLib[ material.userData.code ] = material;
}
}
const newParseScope = {
parentScope: parentScope,
lib: matLib,
url: null,
// Subobjects
subobjects: null,
numSubobjects: 0,
subobjectIndex: 0,
inverted: false,
category: null,
keywords: null,
// Current subobject
currentFileName: null,
mainColourCode: parentScope ? parentScope.mainColourCode : '16',
mainEdgeColourCode: parentScope ? parentScope.mainEdgeColourCode : '24',
currentMatrix: new THREE.Matrix4(),
matrix: new THREE.Matrix4(),
type: 'Model',
groupObject: null,
// If false, it is a root material scope previous to parse
isFromParse: true,
faces: [],
lineSegments: [],
conditionalSegments: [],
totalFaces: 0,
// If true, this object is the start of a construction step
startingConstructionStep: false
};
return newParseScope;
}
addMaterial( material, parseScope ) {
// Adds a material to the material library which is on top of the parse scopes stack. And also to the materials array
const matLib = parseScope.lib;
if ( ! matLib[ material.userData.code ] ) {
this.materials.push( material );
}
matLib[ material.userData.code ] = material;
return this;
}
getMaterial( colourCode, parseScope = this.rootParseScope ) {
// Given a colour code search its material in the parse scopes stack
if ( colourCode.startsWith( '0x2' ) ) {
// Special 'direct' material value (RGB colour)
const colour = colourCode.substring( 3 );
return this.parseColourMetaDirective( new LineParser( 'Direct_Color_' + colour + ' CODE -1 VALUE #' + colour + ' EDGE #' + colour + '' ) );
}
while ( parseScope ) {
const material = parseScope.lib[ colourCode ];
if ( material ) {
return material;
} else {
parseScope = parseScope.parentScope;
}
} // Material was not found
return null;
}
parseColourMetaDirective( lineParser ) {
// Parses a colour definition and returns a THREE.Material
let code = null; // Triangle and line colours
let colour = 0xFF00FF;
let edgeColour = 0xFF00FF; // Transparency
let alpha = 1;
let isTransparent = false; // Self-illumination:
let luminance = 0;
let finishType = FINISH_TYPE_DEFAULT;
let edgeMaterial = null;
const name = lineParser.getToken();
if ( ! name ) {
throw 'LDrawLoader: Material name was expected after "!COLOUR tag' + lineParser.getLineNumberString() + '.';
} // Parse tag tokens and their parameters
let token = null;
while ( true ) {
token = lineParser.getToken();
if ( ! token ) {
break;
}
switch ( token.toUpperCase() ) {
case 'CODE':
code = lineParser.getToken();
break;
case 'VALUE':
colour = lineParser.getToken();
if ( colour.startsWith( '0x' ) ) {
colour = '#' + colour.substring( 2 );
} else if ( ! colour.startsWith( '#' ) ) {
throw 'LDrawLoader: Invalid colour while parsing material' + lineParser.getLineNumberString() + '.';
}
break;
case 'EDGE':
edgeColour = lineParser.getToken();
if ( edgeColour.startsWith( '0x' ) ) {
edgeColour = '#' + edgeColour.substring( 2 );
} else if ( ! edgeColour.startsWith( '#' ) ) {
// Try to see if edge colour is a colour code
edgeMaterial = this.getMaterial( edgeColour );
if ( ! edgeMaterial ) {
throw 'LDrawLoader: Invalid edge colour while parsing material' + lineParser.getLineNumberString() + '.';
} // Get the edge material for this triangle material
edgeMaterial = edgeMaterial.userData.edgeMaterial;
}
break;
case 'ALPHA':
alpha = parseInt( lineParser.getToken() );
if ( isNaN( alpha ) ) {
throw 'LDrawLoader: Invalid alpha value in material definition' + lineParser.getLineNumberString() + '.';
}
alpha = Math.max( 0, Math.min( 1, alpha / 255 ) );
if ( alpha < 1 ) {
isTransparent = true;
}
break;
case 'LUMINANCE':
luminance = parseInt( lineParser.getToken() );
if ( isNaN( luminance ) ) {
throw 'LDrawLoader: Invalid luminance value in material definition' + LineParser.getLineNumberString() + '.';
}
luminance = Math.max( 0, Math.min( 1, luminance / 255 ) );
break;
case 'CHROME':
finishType = FINISH_TYPE_CHROME;
break;
case 'PEARLESCENT':
finishType = FINISH_TYPE_PEARLESCENT;
break;
case 'RUBBER':
finishType = FINISH_TYPE_RUBBER;
break;
case 'MATTE_METALLIC':
finishType = FINISH_TYPE_MATTE_METALLIC;
break;
case 'METAL':
finishType = FINISH_TYPE_METAL;
break;
case 'MATERIAL':
// Not implemented
lineParser.setToEnd();
break;
default:
throw 'LDrawLoader: Unknown token "' + token + '" while parsing material' + lineParser.getLineNumberString() + '.';
break;
}
}
let material = null;
switch ( finishType ) {
case FINISH_TYPE_DEFAULT:
material = new THREE.MeshStandardMaterial( {
color: colour,
roughness: 0.3,
metalness: 0
} );
break;
case FINISH_TYPE_PEARLESCENT:
// Try to imitate pearlescency by making the surface glossy
material = new THREE.MeshStandardMaterial( {
color: colour,
roughness: 0.3,
metalness: 0.25
} );
break;
case FINISH_TYPE_CHROME:
// Mirror finish surface
material = new THREE.MeshStandardMaterial( {
color: colour,
roughness: 0,
metalness: 1
} );
break;
case FINISH_TYPE_RUBBER:
// Rubber finish
material = new THREE.MeshStandardMaterial( {
color: colour,
roughness: 0.9,
metalness: 0
} );
break;
case FINISH_TYPE_MATTE_METALLIC:
// Brushed metal finish
material = new THREE.MeshStandardMaterial( {
color: colour,
roughness: 0.8,
metalness: 0.4
} );
break;
case FINISH_TYPE_METAL:
// Average metal finish
material = new THREE.MeshStandardMaterial( {
color: colour,
roughness: 0.2,
metalness: 0.85
} );
break;
default:
// Should not happen
break;
}
material.transparent = isTransparent;
material.premultipliedAlpha = true;
material.opacity = alpha;
material.depthWrite = ! isTransparent;
material.polygonOffset = true;
material.polygonOffsetFactor = 1;
if ( luminance !== 0 ) {
material.emissive.set( material.color ).multiplyScalar( luminance );
}
if ( ! edgeMaterial ) {
// This is the material used for edges
edgeMaterial = new THREE.LineBasicMaterial( {
color: edgeColour,
transparent: isTransparent,
opacity: alpha,
depthWrite: ! isTransparent
} );
edgeMaterial.userData.code = code;
edgeMaterial.name = name + ' - Edge'; // This is the material used for conditional edges
edgeMaterial.userData.conditionalEdgeMaterial = new LDrawConditionalLineMaterial( {
fog: true,
transparent: isTransparent,
depthWrite: ! isTransparent,
color: edgeColour,
opacity: alpha
} );
}
material.userData.code = code;
material.name = name;
material.userData.edgeMaterial = edgeMaterial;
return material;
} //
objectParse( text, parseScope ) {
// Retrieve data from the parent parse scope
const currentParseScope = parseScope;
const parentParseScope = currentParseScope.parentScope; // Main colour codes passed to this subobject (or default codes 16 and 24 if it is the root object)
const mainColourCode = currentParseScope.mainColourCode;
const mainEdgeColourCode = currentParseScope.mainEdgeColourCode; // Parse result variables
let faces;
let lineSegments;
let conditionalSegments;
const subobjects = [];
let category = null;
let keywords = null;
if ( text.indexOf( '\r\n' ) !== - 1 ) {
// This is faster than String.split with regex that splits on both
text = text.replace( /\r\n/g, '\n' );
}
const lines = text.split( '\n' );
const numLines = lines.length;
let parsingEmbeddedFiles = false;
let currentEmbeddedFileName = null;
let currentEmbeddedText = null;
let bfcCertified = false;
let bfcCCW = true;
let bfcInverted = false;
let bfcCull = true;
let type = '';
let startingConstructionStep = false;
const scope = this;
function parseColourCode( lineParser, forEdge ) {
// Parses next colour code and returns a THREE.Material
let colourCode = lineParser.getToken();
if ( ! forEdge && colourCode === '16' ) {
colourCode = mainColourCode;
}
if ( forEdge && colourCode === '24' ) {
colourCode = mainEdgeColourCode;
}
const material = scope.getMaterial( colourCode, currentParseScope );
if ( ! material ) {
throw 'LDrawLoader: Unknown colour code "' + colourCode + '" is used' + lineParser.getLineNumberString() + ' but it was not defined previously.';
}
return material;
}
function parseVector( lp ) {
const v = new THREE.Vector3( parseFloat( lp.getToken() ), parseFloat( lp.getToken() ), parseFloat( lp.getToken() ) );
if ( ! scope.separateObjects ) {
v.applyMatrix4( currentParseScope.currentMatrix );
}
return v;
} // Parse all line commands
for ( let lineIndex = 0; lineIndex < numLines; lineIndex ++ ) {
const line = lines[ lineIndex ];
if ( line.length === 0 ) continue;
if ( parsingEmbeddedFiles ) {
if ( line.startsWith( '0 FILE ' ) ) {
// Save previous embedded file in the cache
this.cache.setData( currentEmbeddedFileName.toLowerCase(), currentEmbeddedText ); // New embedded text file
currentEmbeddedFileName = line.substring( 7 );
currentEmbeddedText = '';
} else {
currentEmbeddedText += line + '\n';
}
continue;
}
const lp = new LineParser( line, lineIndex + 1 );
lp.seekNonSpace();
if ( lp.isAtTheEnd() ) {
// Empty line
continue;
} // Parse the line type
const lineType = lp.getToken();
let material;
let segment;
let inverted;
let ccw;
let doubleSided;
let v0, v1, v2, v3, c0, c1, faceNormal;
switch ( lineType ) {
// Line type 0: Comment or META
case '0':
// Parse meta directive
const meta = lp.getToken();
if ( meta ) {
switch ( meta ) {
case '!LDRAW_ORG':
type = lp.getToken();
currentParseScope.type = type; // If the scale of the object is negated then the triangle winding order
// needs to be flipped.
if ( currentParseScope.matrix.determinant() < 0 && ( scope.separateObjects && isPrimitiveType( type ) || ! scope.separateObjects ) ) {
currentParseScope.inverted = ! currentParseScope.inverted;
}
faces = currentParseScope.faces;
lineSegments = currentParseScope.lineSegments;
conditionalSegments = currentParseScope.conditionalSegments;
break;
case '!COLOUR':
material = this.parseColourMetaDirective( lp );
if ( material ) {
this.addMaterial( material, parseScope );
} else {
console.warn( 'LDrawLoader: Error parsing material' + lp.getLineNumberString() );
}
break;
case '!CATEGORY':
category = lp.getToken();
break;
case '!KEYWORDS':
const newKeywords = lp.getRemainingString().split( ',' );
if ( newKeywords.length > 0 ) {
if ( ! keywords ) {
keywords = [];
}
newKeywords.forEach( function ( keyword ) {
keywords.push( keyword.trim() );
} );
}
break;
case 'FILE':
if ( lineIndex > 0 ) {
// Start embedded text files parsing
parsingEmbeddedFiles = true;
currentEmbeddedFileName = lp.getRemainingString();
currentEmbeddedText = '';
bfcCertified = false;
bfcCCW = true;
}
break;
case 'BFC':
// Changes to the backface culling state
while ( ! lp.isAtTheEnd() ) {
const token = lp.getToken();
switch ( token ) {
case 'CERTIFY':
case 'NOCERTIFY':
bfcCertified = token === 'CERTIFY';
bfcCCW = true;
break;
case 'CW':
case 'CCW':
bfcCCW = token === 'CCW';
break;
case 'INVERTNEXT':
bfcInverted = true;
break;
case 'CLIP':
case 'NOCLIP':
bfcCull = token === 'CLIP';
break;
default:
console.warn( 'THREE.LDrawLoader: BFC directive "' + token + '" is unknown.' );
break;
}
}
break;
case 'STEP':
startingConstructionStep = true;
break;
default:
// Other meta directives are not implemented
break;
}
}
break;
// Line type 1: Sub-object file
case '1':
material = parseColourCode( lp );
const posX = parseFloat( lp.getToken() );
const posY = parseFloat( lp.getToken() );
const posZ = parseFloat( lp.getToken() );
const m0 = parseFloat( lp.getToken() );
const m1 = parseFloat( lp.getToken() );
const m2 = parseFloat( lp.getToken() );
const m3 = parseFloat( lp.getToken() );
const m4 = parseFloat( lp.getToken() );
const m5 = parseFloat( lp.getToken() );
const m6 = parseFloat( lp.getToken() );
const m7 = parseFloat( lp.getToken() );
const m8 = parseFloat( lp.getToken() );
const matrix = new THREE.Matrix4().set( m0, m1, m2, posX, m3, m4, m5, posY, m6, m7, m8, posZ, 0, 0, 0, 1 );
let fileName = lp.getRemainingString().trim().replace( /\\/g, '/' );
if ( scope.fileMap[ fileName ] ) {
// Found the subobject path in the preloaded file path map
fileName = scope.fileMap[ fileName ];
} else {
// Standardized subfolders
if ( fileName.startsWith( 's/' ) ) {
fileName = 'parts/' + fileName;
} else if ( fileName.startsWith( '48/' ) ) {
fileName = 'p/' + fileName;
}
}
subobjects.push( {
material: material,
matrix: matrix,
fileName: fileName,
inverted: bfcInverted !== currentParseScope.inverted,
startingConstructionStep: startingConstructionStep
} );
bfcInverted = false;
break;
// Line type 2: Line segment
case '2':
material = parseColourCode( lp, true );
v0 = parseVector( lp );
v1 = parseVector( lp );
segment = {
material: material.userData.edgeMaterial,
colourCode: material.userData.code,
v0: v0,
v1: v1,
vertices: [ v0, v1 ]
};
lineSegments.push( segment );
break;
// Line type 5: Conditional Line segment
case '5':
material = parseColourCode( lp, true );
v0 = parseVector( lp );
v1 = parseVector( lp );
c0 = parseVector( lp );
c1 = parseVector( lp );
segment = {
material: material.userData.edgeMaterial.userData.conditionalEdgeMaterial,
colourCode: material.userData.code,
vertices: [ v0, v1 ],
controlPoints: [ c0, c1 ]
};
conditionalSegments.push( segment );
break;
// Line type 3: Triangle
case '3':
material = parseColourCode( lp );
inverted = currentParseScope.inverted;
ccw = bfcCCW !== inverted;
doubleSided = ! bfcCertified || ! bfcCull;
if ( ccw === true ) {
v0 = parseVector( lp );
v1 = parseVector( lp );
v2 = parseVector( lp );
} else {
v2 = parseVector( lp );
v1 = parseVector( lp );
v0 = parseVector( lp );
}
_tempVec0.subVectors( v1, v0 );
_tempVec1.subVectors( v2, v1 );
faceNormal = new THREE.Vector3().crossVectors( _tempVec0, _tempVec1 ).normalize();
faces.push( {
material: material,
colourCode: material.userData.code,
faceNormal: faceNormal,
vertices: [ v0, v1, v2 ],
normals: [ null, null, null ]
} );
currentParseScope.totalFaces ++;
if ( doubleSided === true ) {
faces.push( {
material: material,
colourCode: material.userData.code,
faceNormal: faceNormal,
vertices: [ v2, v1, v0 ],
normals: [ null, null, null ]
} );
currentParseScope.totalFaces ++;
}
break;
// Line type 4: Quadrilateral
case '4':
material = parseColourCode( lp );
inverted = currentParseScope.inverted;
ccw = bfcCCW !== inverted;
doubleSided = ! bfcCertified || ! bfcCull;
if ( ccw === true ) {
v0 = parseVector( lp );
v1 = parseVector( lp );
v2 = parseVector( lp );
v3 = parseVector( lp );
} else {
v3 = parseVector( lp );
v2 = parseVector( lp );
v1 = parseVector( lp );
v0 = parseVector( lp );
}
_tempVec0.subVectors( v1, v0 );
_tempVec1.subVectors( v2, v1 );
faceNormal = new THREE.Vector3().crossVectors( _tempVec0, _tempVec1 ).normalize(); // specifically place the triangle diagonal in the v0 and v1 slots so we can
// account for the doubling of vertices later when smoothing normals.
faces.push( {
material: material,
colourCode: material.userData.code,
faceNormal: faceNormal,
vertices: [ v0, v1, v2, v3 ],
normals: [ null, null, null, null ]
} );
currentParseScope.totalFaces += 2;
if ( doubleSided === true ) {
faces.push( {
material: material,
colourCode: material.userData.code,
faceNormal: faceNormal,
vertices: [ v3, v2, v1, v0 ],
normals: [ null, null, null, null ]
} );
currentParseScope.totalFaces += 2;
}
break;
default:
throw 'LDrawLoader: Unknown line type "' + lineType + '"' + lp.getLineNumberString() + '.';
break;
}
}
if ( parsingEmbeddedFiles ) {
this.cache.setData( currentEmbeddedFileName.toLowerCase(), currentEmbeddedText );
}
currentParseScope.category = category;
currentParseScope.keywords = keywords;
currentParseScope.subobjects = subobjects;
currentParseScope.numSubobjects = subobjects.length;
currentParseScope.subobjectIndex = 0;
const isRoot = ! parentParseScope.isFromParse;
if ( isRoot || scope.separateObjects && ! isPrimitiveType( type ) ) {
currentParseScope.groupObject = new THREE.Group();
currentParseScope.groupObject.userData.startingConstructionStep = currentParseScope.startingConstructionStep;
}
}
computeConstructionSteps( model ) {
// Sets userdata.constructionStep number in THREE.Group objects and userData.numConstructionSteps number in the root THREE.Group object.
let stepNumber = 0;
model.traverse( c => {
if ( c.isGroup ) {
if ( c.userData.startingConstructionStep ) {
stepNumber ++;
}
c.userData.constructionStep = stepNumber;
}
} );
model.userData.numConstructionSteps = stepNumber + 1;
}
finalizeObject( subobjectParseScope ) {
// fail gracefully if an object could not be loaded
if ( subobjectParseScope === null ) {
return;
}
const parentParseScope = subobjectParseScope.parentScope; // Smooth the normals if this is a part or if this is a case where the subpart
// is added directly into the parent model (meaning it will never get smoothed by
// being added to a part)
const doSmooth = isPartType( subobjectParseScope.type ) || ! isPartType( subobjectParseScope.type ) && ! isModelType( subobjectParseScope.type ) && isModelType( subobjectParseScope.parentScope.type );
if ( this.smoothNormals && doSmooth ) {
smoothNormals( subobjectParseScope.faces, subobjectParseScope.lineSegments );
}
const isRoot = ! parentParseScope.isFromParse;
if ( this.separateObjects && ! isPrimitiveType( subobjectParseScope.type ) || isRoot ) {
const objGroup = subobjectParseScope.groupObject;
if ( subobjectParseScope.faces.length > 0 ) {
objGroup.add( createObject( subobjectParseScope.faces, 3, false, subobjectParseScope.totalFaces ) );
}
if ( subobjectParseScope.lineSegments.length > 0 ) {
objGroup.add( createObject( subobjectParseScope.lineSegments, 2 ) );
}
if ( subobjectParseScope.conditionalSegments.length > 0 ) {
objGroup.add( createObject( subobjectParseScope.conditionalSegments, 2, true ) );
}
if ( parentParseScope.groupObject ) {
objGroup.name = subobjectParseScope.fileName;
objGroup.userData.category = subobjectParseScope.category;
objGroup.userData.keywords = subobjectParseScope.keywords;
subobjectParseScope.matrix.decompose( objGroup.position, objGroup.quaternion, objGroup.scale );
parentParseScope.groupObject.add( objGroup );
}
} else {
const separateObjects = this.separateObjects;
const parentLineSegments = parentParseScope.lineSegments;
const parentConditionalSegments = parentParseScope.conditionalSegments;
const parentFaces = parentParseScope.faces;
const lineSegments = subobjectParseScope.lineSegments;
const conditionalSegments = subobjectParseScope.conditionalSegments;
const faces = subobjectParseScope.faces;
for ( let i = 0, l = lineSegments.length; i < l; i ++ ) {
const ls = lineSegments[ i ];
if ( separateObjects ) {
const vertices = ls.vertices;
vertices[ 0 ].applyMatrix4( subobjectParseScope.matrix );
vertices[ 1 ].applyMatrix4( subobjectParseScope.matrix );
}
parentLineSegments.push( ls );
}
for ( let i = 0, l = conditionalSegments.length; i < l; i ++ ) {
const os = conditionalSegments[ i ];
if ( separateObjects ) {
const vertices = os.vertices;
const controlPoints = os.controlPoints;
vertices[ 0 ].applyMatrix4( subobjectParseScope.matrix );
vertices[ 1 ].applyMatrix4( subobjectParseScope.matrix );
controlPoints[ 0 ].applyMatrix4( subobjectParseScope.matrix );
controlPoints[ 1 ].applyMatrix4( subobjectParseScope.matrix );
}
parentConditionalSegments.push( os );
}
for ( let i = 0, l = faces.length; i < l; i ++ ) {
const tri = faces[ i ];
if ( separateObjects ) {
const vertices = tri.vertices;
for ( let i = 0, l = vertices.length; i < l; i ++ ) {
vertices[ i ] = vertices[ i ].clone().applyMatrix4( subobjectParseScope.matrix );
}
_tempVec0.subVectors( vertices[ 1 ], vertices[ 0 ] );
_tempVec1.subVectors( vertices[ 2 ], vertices[ 1 ] );
tri.faceNormal.crossVectors( _tempVec0, _tempVec1 ).normalize();
}
parentFaces.push( tri );
}
parentParseScope.totalFaces += subobjectParseScope.totalFaces;
}
}
async processObject( text, subobject, url, parentScope ) {
const scope = this;
const parseScope = this.newParseScopeLevel( null, parentScope );
parseScope.url = url;
const parentParseScope = parseScope.parentScope; // Set current matrix
if ( subobject ) {
parseScope.currentMatrix.multiplyMatrices( parentParseScope.currentMatrix, subobject.matrix );
parseScope.matrix.copy( subobject.matrix );
parseScope.inverted = subobject.inverted;
parseScope.startingConstructionStep = subobject.startingConstructionStep;
parseScope.mainColourCode = subobject.material.userData.code;
parseScope.mainEdgeColourCode = subobject.material.userData.edgeMaterial.userData.code;
parseScope.fileName = subobject.fileName;
} // Parse the object
this.objectParse( text, parseScope );
const subobjects = parseScope.subobjects;
const promises = [];
for ( let i = 0, l = subobjects.length; i < l; i ++ ) {
promises.push( loadSubobject( parseScope.subobjects[ i ] ) );
} // Kick off of the downloads in parallel but process all the subobjects
// in order so all the assembly instructions are correct
const subobjectScopes = await Promise.all( promises );
for ( let i = 0, l = subobjectScopes.length; i < l; i ++ ) {
this.finalizeObject( subobjectScopes[ i ] );
} // If it is root object then finalize this object and compute construction steps
if ( ! parentParseScope.isFromParse ) {
this.finalizeObject( parseScope );
this.computeConstructionSteps( parseScope.groupObject );
}
return parseScope;
function loadSubobject( subobject ) {
return scope.cache.loadData( subobject.fileName ).then( function ( text ) {
return scope.processObject( text, subobject, url, parseScope );
} ).catch( function () {
console.warn( 'LDrawLoader: Subobject "' + subobject.fileName + '" could not be found.' );
return null;
} );
}
}
}
THREE.LDrawLoader = LDrawLoader;
} )();