Dies ist das Repository meines kleinen Portfolios.
Im Hintergrund läuft eine Planetensimulation, geschrieben in JavaScript und Three.js.
Die zu sehenden Texturen stammen von:
https://www.solarsystemscope.com/textures/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
360 lines
11 KiB
360 lines
11 KiB
( function () { |
|
|
|
/** |
|
* GPUComputationRenderer, based on SimulationRenderer by zz85 |
|
* |
|
* The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats |
|
* for each compute element (texel) |
|
* |
|
* Each variable has a fragment shader that defines the computation made to obtain the variable in question. |
|
* You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader |
|
* (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency. |
|
* |
|
* The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used |
|
* as inputs to render the textures of the next frame. |
|
* |
|
* The render targets of the variables can be used as input textures for your visualization shaders. |
|
* |
|
* Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers. |
|
* a common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity... |
|
* |
|
* The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example: |
|
* #DEFINE resolution vec2( 1024.0, 1024.0 ) |
|
* |
|
* ------------- |
|
* |
|
* Basic use: |
|
* |
|
* // Initialization... |
|
* |
|
* // Create computation renderer |
|
* const gpuCompute = new GPUComputationRenderer( 1024, 1024, renderer ); |
|
* |
|
* // Create initial state float textures |
|
* const pos0 = gpuCompute.createTexture(); |
|
* const vel0 = gpuCompute.createTexture(); |
|
* // and fill in here the texture data... |
|
* |
|
* // Add texture variables |
|
* const velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, pos0 ); |
|
* const posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, vel0 ); |
|
* |
|
* // Add variable dependencies |
|
* gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] ); |
|
* gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] ); |
|
* |
|
* // Add custom uniforms |
|
* velVar.material.uniforms.time = { value: 0.0 }; |
|
* |
|
* // Check for completeness |
|
* const error = gpuCompute.init(); |
|
* if ( error !== null ) { |
|
* console.error( error ); |
|
* } |
|
* |
|
* |
|
* // In each frame... |
|
* |
|
* // Compute! |
|
* gpuCompute.compute(); |
|
* |
|
* // Update texture uniforms in your visualization materials with the gpu renderer output |
|
* myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture; |
|
* |
|
* // Do your rendering |
|
* renderer.render( myScene, myCamera ); |
|
* |
|
* ------------- |
|
* |
|
* Also, you can use utility functions to create THREE.ShaderMaterial and perform computations (rendering between textures) |
|
* Note that the shaders can have multiple input textures. |
|
* |
|
* const myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { value: null } } ); |
|
* const myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { value: null } } ); |
|
* |
|
* const inputTexture = gpuCompute.createTexture(); |
|
* |
|
* // Fill in here inputTexture... |
|
* |
|
* myFilter1.uniforms.theTexture.value = inputTexture; |
|
* |
|
* const myRenderTarget = gpuCompute.createRenderTarget(); |
|
* myFilter2.uniforms.theTexture.value = myRenderTarget.texture; |
|
* |
|
* const outputRenderTarget = gpuCompute.createRenderTarget(); |
|
* |
|
* // Now use the output texture where you want: |
|
* myMaterial.uniforms.map.value = outputRenderTarget.texture; |
|
* |
|
* // And compute each frame, before rendering to screen: |
|
* gpuCompute.doRenderTarget( myFilter1, myRenderTarget ); |
|
* gpuCompute.doRenderTarget( myFilter2, outputRenderTarget ); |
|
* |
|
* |
|
* |
|
* @param {int} sizeX Computation problem size is always 2d: sizeX * sizeY elements. |
|
* @param {int} sizeY Computation problem size is always 2d: sizeX * sizeY elements. |
|
* @param {WebGLRenderer} renderer The renderer |
|
*/ |
|
|
|
class GPUComputationRenderer { |
|
|
|
constructor( sizeX, sizeY, renderer ) { |
|
|
|
this.variables = []; |
|
this.currentTextureIndex = 0; |
|
let dataType = THREE.FloatType; |
|
const scene = new THREE.Scene(); |
|
const camera = new THREE.Camera(); |
|
camera.position.z = 1; |
|
const passThruUniforms = { |
|
passThruTexture: { |
|
value: null |
|
} |
|
}; |
|
const passThruShader = createShaderMaterial( getPassThroughFragmentShader(), passThruUniforms ); |
|
const mesh = new THREE.Mesh( new THREE.PlaneGeometry( 2, 2 ), passThruShader ); |
|
scene.add( mesh ); |
|
|
|
this.setDataType = function ( type ) { |
|
|
|
dataType = type; |
|
return this; |
|
|
|
}; |
|
|
|
this.addVariable = function ( variableName, computeFragmentShader, initialValueTexture ) { |
|
|
|
const material = this.createShaderMaterial( computeFragmentShader ); |
|
const variable = { |
|
name: variableName, |
|
initialValueTexture: initialValueTexture, |
|
material: material, |
|
dependencies: null, |
|
renderTargets: [], |
|
wrapS: null, |
|
wrapT: null, |
|
minFilter: THREE.NearestFilter, |
|
magFilter: THREE.NearestFilter |
|
}; |
|
this.variables.push( variable ); |
|
return variable; |
|
|
|
}; |
|
|
|
this.setVariableDependencies = function ( variable, dependencies ) { |
|
|
|
variable.dependencies = dependencies; |
|
|
|
}; |
|
|
|
this.init = function () { |
|
|
|
if ( renderer.capabilities.isWebGL2 === false && renderer.extensions.has( 'OES_texture_float' ) === false ) { |
|
|
|
return 'No OES_texture_float support for float textures.'; |
|
|
|
} |
|
|
|
if ( renderer.capabilities.maxVertexTextures === 0 ) { |
|
|
|
return 'No support for vertex shader textures.'; |
|
|
|
} |
|
|
|
for ( let i = 0; i < this.variables.length; i ++ ) { |
|
|
|
const variable = this.variables[ i ]; // Creates rendertargets and initialize them with input texture |
|
|
|
variable.renderTargets[ 0 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter ); |
|
variable.renderTargets[ 1 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter ); |
|
this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 0 ] ); |
|
this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 1 ] ); // Adds dependencies uniforms to the THREE.ShaderMaterial |
|
|
|
const material = variable.material; |
|
const uniforms = material.uniforms; |
|
|
|
if ( variable.dependencies !== null ) { |
|
|
|
for ( let d = 0; d < variable.dependencies.length; d ++ ) { |
|
|
|
const depVar = variable.dependencies[ d ]; |
|
|
|
if ( depVar.name !== variable.name ) { |
|
|
|
// Checks if variable exists |
|
let found = false; |
|
|
|
for ( let j = 0; j < this.variables.length; j ++ ) { |
|
|
|
if ( depVar.name === this.variables[ j ].name ) { |
|
|
|
found = true; |
|
break; |
|
|
|
} |
|
|
|
} |
|
|
|
if ( ! found ) { |
|
|
|
return 'Variable dependency not found. Variable=' + variable.name + ', dependency=' + depVar.name; |
|
|
|
} |
|
|
|
} |
|
|
|
uniforms[ depVar.name ] = { |
|
value: null |
|
}; |
|
material.fragmentShader = '\nuniform sampler2D ' + depVar.name + ';\n' + material.fragmentShader; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
this.currentTextureIndex = 0; |
|
return null; |
|
|
|
}; |
|
|
|
this.compute = function () { |
|
|
|
const currentTextureIndex = this.currentTextureIndex; |
|
const nextTextureIndex = this.currentTextureIndex === 0 ? 1 : 0; |
|
|
|
for ( let i = 0, il = this.variables.length; i < il; i ++ ) { |
|
|
|
const variable = this.variables[ i ]; // Sets texture dependencies uniforms |
|
|
|
if ( variable.dependencies !== null ) { |
|
|
|
const uniforms = variable.material.uniforms; |
|
|
|
for ( let d = 0, dl = variable.dependencies.length; d < dl; d ++ ) { |
|
|
|
const depVar = variable.dependencies[ d ]; |
|
uniforms[ depVar.name ].value = depVar.renderTargets[ currentTextureIndex ].texture; |
|
|
|
} |
|
|
|
} // Performs the computation for this variable |
|
|
|
|
|
this.doRenderTarget( variable.material, variable.renderTargets[ nextTextureIndex ] ); |
|
|
|
} |
|
|
|
this.currentTextureIndex = nextTextureIndex; |
|
|
|
}; |
|
|
|
this.getCurrentRenderTarget = function ( variable ) { |
|
|
|
return variable.renderTargets[ this.currentTextureIndex ]; |
|
|
|
}; |
|
|
|
this.getAlternateRenderTarget = function ( variable ) { |
|
|
|
return variable.renderTargets[ this.currentTextureIndex === 0 ? 1 : 0 ]; |
|
|
|
}; |
|
|
|
function addResolutionDefine( materialShader ) { |
|
|
|
materialShader.defines.resolution = 'vec2( ' + sizeX.toFixed( 1 ) + ', ' + sizeY.toFixed( 1 ) + ' )'; |
|
|
|
} |
|
|
|
this.addResolutionDefine = addResolutionDefine; // The following functions can be used to compute things manually |
|
|
|
function createShaderMaterial( computeFragmentShader, uniforms ) { |
|
|
|
uniforms = uniforms || {}; |
|
const material = new THREE.ShaderMaterial( { |
|
uniforms: uniforms, |
|
vertexShader: getPassThroughVertexShader(), |
|
fragmentShader: computeFragmentShader |
|
} ); |
|
addResolutionDefine( material ); |
|
return material; |
|
|
|
} |
|
|
|
this.createShaderMaterial = createShaderMaterial; |
|
|
|
this.createRenderTarget = function ( sizeXTexture, sizeYTexture, wrapS, wrapT, minFilter, magFilter ) { |
|
|
|
sizeXTexture = sizeXTexture || sizeX; |
|
sizeYTexture = sizeYTexture || sizeY; |
|
wrapS = wrapS || THREE.ClampToEdgeWrapping; |
|
wrapT = wrapT || THREE.ClampToEdgeWrapping; |
|
minFilter = minFilter || THREE.NearestFilter; |
|
magFilter = magFilter || THREE.NearestFilter; |
|
const renderTarget = new THREE.WebGLRenderTarget( sizeXTexture, sizeYTexture, { |
|
wrapS: wrapS, |
|
wrapT: wrapT, |
|
minFilter: minFilter, |
|
magFilter: magFilter, |
|
format: THREE.RGBAFormat, |
|
type: dataType, |
|
depthBuffer: false |
|
} ); |
|
return renderTarget; |
|
|
|
}; |
|
|
|
this.createTexture = function () { |
|
|
|
const data = new Float32Array( sizeX * sizeY * 4 ); |
|
const texture = new THREE.DataTexture( data, sizeX, sizeY, THREE.RGBAFormat, THREE.FloatType ); |
|
texture.needsUpdate = true; |
|
return texture; |
|
|
|
}; |
|
|
|
this.renderTexture = function ( input, output ) { |
|
|
|
// Takes a texture, and render out in rendertarget |
|
// input = Texture |
|
// output = RenderTarget |
|
passThruUniforms.passThruTexture.value = input; |
|
this.doRenderTarget( passThruShader, output ); |
|
passThruUniforms.passThruTexture.value = null; |
|
|
|
}; |
|
|
|
this.doRenderTarget = function ( material, output ) { |
|
|
|
const currentRenderTarget = renderer.getRenderTarget(); |
|
mesh.material = material; |
|
renderer.setRenderTarget( output ); |
|
renderer.render( scene, camera ); |
|
mesh.material = passThruShader; |
|
renderer.setRenderTarget( currentRenderTarget ); |
|
|
|
}; // Shaders |
|
|
|
|
|
function getPassThroughVertexShader() { |
|
|
|
return 'void main() {\n' + '\n' + ' gl_Position = vec4( position, 1.0 );\n' + '\n' + '}\n'; |
|
|
|
} |
|
|
|
function getPassThroughFragmentShader() { |
|
|
|
return 'uniform sampler2D passThruTexture;\n' + '\n' + 'void main() {\n' + '\n' + ' vec2 uv = gl_FragCoord.xy / resolution.xy;\n' + '\n' + ' gl_FragColor = texture2D( passThruTexture, uv );\n' + '\n' + '}\n'; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
THREE.GPUComputationRenderer = GPUComputationRenderer; |
|
|
|
} )();
|
|
|