Dies ist das Repository meines kleinen Portfolios.
Im Hintergrund läuft eine Planetensimulation, geschrieben in JavaScript und Three.js.
Die zu sehenden Texturen stammen von:
https://www.solarsystemscope.com/textures/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
261 lines
8.0 KiB
261 lines
8.0 KiB
( function () { |
|
|
|
class Refractor extends THREE.Mesh { |
|
|
|
constructor( geometry, options = {} ) { |
|
|
|
super( geometry ); |
|
this.type = 'Refractor'; |
|
const scope = this; |
|
const color = options.color !== undefined ? new THREE.Color( options.color ) : new THREE.Color( 0x7F7F7F ); |
|
const textureWidth = options.textureWidth || 512; |
|
const textureHeight = options.textureHeight || 512; |
|
const clipBias = options.clipBias || 0; |
|
const shader = options.shader || Refractor.RefractorShader; // |
|
|
|
const virtualCamera = new THREE.PerspectiveCamera(); |
|
virtualCamera.matrixAutoUpdate = false; |
|
virtualCamera.userData.refractor = true; // |
|
|
|
const refractorPlane = new THREE.Plane(); |
|
const textureMatrix = new THREE.Matrix4(); // render target |
|
|
|
const parameters = { |
|
minFilter: THREE.LinearFilter, |
|
magFilter: THREE.LinearFilter, |
|
format: THREE.RGBFormat |
|
}; |
|
const renderTarget = new THREE.WebGLRenderTarget( textureWidth, textureHeight, parameters ); |
|
|
|
if ( ! THREE.MathUtils.isPowerOfTwo( textureWidth ) || ! THREE.MathUtils.isPowerOfTwo( textureHeight ) ) { |
|
|
|
renderTarget.texture.generateMipmaps = false; |
|
|
|
} // material |
|
|
|
|
|
this.material = new THREE.ShaderMaterial( { |
|
uniforms: THREE.UniformsUtils.clone( shader.uniforms ), |
|
vertexShader: shader.vertexShader, |
|
fragmentShader: shader.fragmentShader, |
|
transparent: true // ensures, refractors are drawn from farthest to closest |
|
|
|
} ); |
|
this.material.uniforms[ 'color' ].value = color; |
|
this.material.uniforms[ 'tDiffuse' ].value = renderTarget.texture; |
|
this.material.uniforms[ 'textureMatrix' ].value = textureMatrix; // functions |
|
|
|
const visible = function () { |
|
|
|
const refractorWorldPosition = new THREE.Vector3(); |
|
const cameraWorldPosition = new THREE.Vector3(); |
|
const rotationMatrix = new THREE.Matrix4(); |
|
const view = new THREE.Vector3(); |
|
const normal = new THREE.Vector3(); |
|
return function visible( camera ) { |
|
|
|
refractorWorldPosition.setFromMatrixPosition( scope.matrixWorld ); |
|
cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld ); |
|
view.subVectors( refractorWorldPosition, cameraWorldPosition ); |
|
rotationMatrix.extractRotation( scope.matrixWorld ); |
|
normal.set( 0, 0, 1 ); |
|
normal.applyMatrix4( rotationMatrix ); |
|
return view.dot( normal ) < 0; |
|
|
|
}; |
|
|
|
}(); |
|
|
|
const updateRefractorPlane = function () { |
|
|
|
const normal = new THREE.Vector3(); |
|
const position = new THREE.Vector3(); |
|
const quaternion = new THREE.Quaternion(); |
|
const scale = new THREE.Vector3(); |
|
return function updateRefractorPlane() { |
|
|
|
scope.matrixWorld.decompose( position, quaternion, scale ); |
|
normal.set( 0, 0, 1 ).applyQuaternion( quaternion ).normalize(); // flip the normal because we want to cull everything above the plane |
|
|
|
normal.negate(); |
|
refractorPlane.setFromNormalAndCoplanarPoint( normal, position ); |
|
|
|
}; |
|
|
|
}(); |
|
|
|
const updateVirtualCamera = function () { |
|
|
|
const clipPlane = new THREE.Plane(); |
|
const clipVector = new THREE.Vector4(); |
|
const q = new THREE.Vector4(); |
|
return function updateVirtualCamera( camera ) { |
|
|
|
virtualCamera.matrixWorld.copy( camera.matrixWorld ); |
|
virtualCamera.matrixWorldInverse.copy( virtualCamera.matrixWorld ).invert(); |
|
virtualCamera.projectionMatrix.copy( camera.projectionMatrix ); |
|
virtualCamera.far = camera.far; // used in WebGLBackground |
|
// The following code creates an oblique view frustum for clipping. |
|
// see: Lengyel, Eric. “Oblique View Frustum Depth Projection and Clipping”. |
|
// Journal of Game Development, Vol. 1, No. 2 (2005), Charles River Media, pp. 5–16 |
|
|
|
clipPlane.copy( refractorPlane ); |
|
clipPlane.applyMatrix4( virtualCamera.matrixWorldInverse ); |
|
clipVector.set( clipPlane.normal.x, clipPlane.normal.y, clipPlane.normal.z, clipPlane.constant ); // calculate the clip-space corner point opposite the clipping plane and |
|
// transform it into camera space by multiplying it by the inverse of the projection matrix |
|
|
|
const projectionMatrix = virtualCamera.projectionMatrix; |
|
q.x = ( Math.sign( clipVector.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ]; |
|
q.y = ( Math.sign( clipVector.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ]; |
|
q.z = - 1.0; |
|
q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ]; // calculate the scaled plane vector |
|
|
|
clipVector.multiplyScalar( 2.0 / clipVector.dot( q ) ); // replacing the third row of the projection matrix |
|
|
|
projectionMatrix.elements[ 2 ] = clipVector.x; |
|
projectionMatrix.elements[ 6 ] = clipVector.y; |
|
projectionMatrix.elements[ 10 ] = clipVector.z + 1.0 - clipBias; |
|
projectionMatrix.elements[ 14 ] = clipVector.w; |
|
|
|
}; |
|
|
|
}(); // This will update the texture matrix that is used for projective texture mapping in the shader. |
|
// see: http://developer.download.nvidia.com/assets/gamedev/docs/projective_texture_mapping.pdf |
|
|
|
|
|
function updateTextureMatrix( camera ) { |
|
|
|
// this matrix does range mapping to [ 0, 1 ] |
|
textureMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); // we use "Object Linear Texgen", so we need to multiply the texture matrix T |
|
// (matrix above) with the projection and view matrix of the virtual camera |
|
// and the model matrix of the refractor |
|
|
|
textureMatrix.multiply( camera.projectionMatrix ); |
|
textureMatrix.multiply( camera.matrixWorldInverse ); |
|
textureMatrix.multiply( scope.matrixWorld ); |
|
|
|
} // |
|
|
|
|
|
function render( renderer, scene, camera ) { |
|
|
|
scope.visible = false; |
|
const currentRenderTarget = renderer.getRenderTarget(); |
|
const currentXrEnabled = renderer.xr.enabled; |
|
const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate; |
|
renderer.xr.enabled = false; // avoid camera modification |
|
|
|
renderer.shadowMap.autoUpdate = false; // avoid re-computing shadows |
|
|
|
renderer.setRenderTarget( renderTarget ); |
|
if ( renderer.autoClear === false ) renderer.clear(); |
|
renderer.render( scene, virtualCamera ); |
|
renderer.xr.enabled = currentXrEnabled; |
|
renderer.shadowMap.autoUpdate = currentShadowAutoUpdate; |
|
renderer.setRenderTarget( currentRenderTarget ); // restore viewport |
|
|
|
const viewport = camera.viewport; |
|
|
|
if ( viewport !== undefined ) { |
|
|
|
renderer.state.viewport( viewport ); |
|
|
|
} |
|
|
|
scope.visible = true; |
|
|
|
} // |
|
|
|
|
|
this.onBeforeRender = function ( renderer, scene, camera ) { |
|
|
|
// Render |
|
renderTarget.texture.encoding = renderer.outputEncoding; // ensure refractors are rendered only once per frame |
|
|
|
if ( camera.userData.refractor === true ) return; // avoid rendering when the refractor is viewed from behind |
|
|
|
if ( ! visible( camera ) === true ) return; // update |
|
|
|
updateRefractorPlane(); |
|
updateTextureMatrix( camera ); |
|
updateVirtualCamera( camera ); |
|
render( renderer, scene, camera ); |
|
|
|
}; |
|
|
|
this.getRenderTarget = function () { |
|
|
|
return renderTarget; |
|
|
|
}; |
|
|
|
this.dispose = function () { |
|
|
|
renderTarget.dispose(); |
|
scope.material.dispose(); |
|
|
|
}; |
|
|
|
} |
|
|
|
} |
|
|
|
Refractor.prototype.isRefractor = true; |
|
Refractor.RefractorShader = { |
|
uniforms: { |
|
'color': { |
|
value: null |
|
}, |
|
'tDiffuse': { |
|
value: null |
|
}, |
|
'textureMatrix': { |
|
value: null |
|
} |
|
}, |
|
vertexShader: |
|
/* glsl */ |
|
` |
|
|
|
uniform mat4 textureMatrix; |
|
|
|
varying vec4 vUv; |
|
|
|
void main() { |
|
|
|
vUv = textureMatrix * vec4( position, 1.0 ); |
|
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); |
|
|
|
}`, |
|
fragmentShader: |
|
/* glsl */ |
|
` |
|
|
|
uniform vec3 color; |
|
uniform sampler2D tDiffuse; |
|
|
|
varying vec4 vUv; |
|
|
|
float blendOverlay( float base, float blend ) { |
|
|
|
return( base < 0.5 ? ( 2.0 * base * blend ) : ( 1.0 - 2.0 * ( 1.0 - base ) * ( 1.0 - blend ) ) ); |
|
|
|
} |
|
|
|
vec3 blendOverlay( vec3 base, vec3 blend ) { |
|
|
|
return vec3( blendOverlay( base.r, blend.r ), blendOverlay( base.g, blend.g ), blendOverlay( base.b, blend.b ) ); |
|
|
|
} |
|
|
|
void main() { |
|
|
|
vec4 base = texture2DProj( tDiffuse, vUv ); |
|
gl_FragColor = vec4( blendOverlay( base.rgb, color ), 1.0 ); |
|
|
|
}` |
|
}; |
|
|
|
THREE.Refractor = Refractor; |
|
|
|
} )();
|
|
|