Dies ist das Repository meines kleinen Portfolios.
Im Hintergrund läuft eine Planetensimulation, geschrieben in JavaScript und Three.js.
Die zu sehenden Texturen stammen von:
https://www.solarsystemscope.com/textures/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
306 lines
8.2 KiB
306 lines
8.2 KiB
( function () { |
|
|
|
/** |
|
* References: |
|
* https://alex.vlachos.com/graphics/Vlachos-SIGGRAPH10-WaterFlow.pdf |
|
* http://graphicsrunner.blogspot.de/2010/08/water-using-flow-maps.html |
|
* |
|
*/ |
|
|
|
class Water extends THREE.Mesh { |
|
|
|
constructor( geometry, options = {} ) { |
|
|
|
super( geometry ); |
|
this.type = 'Water'; |
|
const scope = this; |
|
const color = options.color !== undefined ? new THREE.Color( options.color ) : new THREE.Color( 0xFFFFFF ); |
|
const textureWidth = options.textureWidth || 512; |
|
const textureHeight = options.textureHeight || 512; |
|
const clipBias = options.clipBias || 0; |
|
const flowDirection = options.flowDirection || new THREE.Vector2( 1, 0 ); |
|
const flowSpeed = options.flowSpeed || 0.03; |
|
const reflectivity = options.reflectivity || 0.02; |
|
const scale = options.scale || 1; |
|
const shader = options.shader || Water.WaterShader; |
|
const textureLoader = new THREE.TextureLoader(); |
|
const flowMap = options.flowMap || undefined; |
|
const normalMap0 = options.normalMap0 || textureLoader.load( 'textures/water/Water_1_M_Normal.jpg' ); |
|
const normalMap1 = options.normalMap1 || textureLoader.load( 'textures/water/Water_2_M_Normal.jpg' ); |
|
const cycle = 0.15; // a cycle of a flow map phase |
|
|
|
const halfCycle = cycle * 0.5; |
|
const textureMatrix = new THREE.Matrix4(); |
|
const clock = new THREE.Clock(); // internal components |
|
|
|
if ( THREE.Reflector === undefined ) { |
|
|
|
console.error( 'THREE.Water: Required component THREE.Reflector not found.' ); |
|
return; |
|
|
|
} |
|
|
|
if ( THREE.Refractor === undefined ) { |
|
|
|
console.error( 'THREE.Water: Required component THREE.Refractor not found.' ); |
|
return; |
|
|
|
} |
|
|
|
const reflector = new THREE.Reflector( geometry, { |
|
textureWidth: textureWidth, |
|
textureHeight: textureHeight, |
|
clipBias: clipBias |
|
} ); |
|
const refractor = new THREE.Refractor( geometry, { |
|
textureWidth: textureWidth, |
|
textureHeight: textureHeight, |
|
clipBias: clipBias |
|
} ); |
|
reflector.matrixAutoUpdate = false; |
|
refractor.matrixAutoUpdate = false; // material |
|
|
|
this.material = new THREE.ShaderMaterial( { |
|
uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ 'fog' ], shader.uniforms ] ), |
|
vertexShader: shader.vertexShader, |
|
fragmentShader: shader.fragmentShader, |
|
transparent: true, |
|
fog: true |
|
} ); |
|
|
|
if ( flowMap !== undefined ) { |
|
|
|
this.material.defines.USE_FLOWMAP = ''; |
|
this.material.uniforms[ 'tFlowMap' ] = { |
|
type: 't', |
|
value: flowMap |
|
}; |
|
|
|
} else { |
|
|
|
this.material.uniforms[ 'flowDirection' ] = { |
|
type: 'v2', |
|
value: flowDirection |
|
}; |
|
|
|
} // maps |
|
|
|
|
|
normalMap0.wrapS = normalMap0.wrapT = THREE.RepeatWrapping; |
|
normalMap1.wrapS = normalMap1.wrapT = THREE.RepeatWrapping; |
|
this.material.uniforms[ 'tReflectionMap' ].value = reflector.getRenderTarget().texture; |
|
this.material.uniforms[ 'tRefractionMap' ].value = refractor.getRenderTarget().texture; |
|
this.material.uniforms[ 'tNormalMap0' ].value = normalMap0; |
|
this.material.uniforms[ 'tNormalMap1' ].value = normalMap1; // water |
|
|
|
this.material.uniforms[ 'color' ].value = color; |
|
this.material.uniforms[ 'reflectivity' ].value = reflectivity; |
|
this.material.uniforms[ 'textureMatrix' ].value = textureMatrix; // inital values |
|
|
|
this.material.uniforms[ 'config' ].value.x = 0; // flowMapOffset0 |
|
|
|
this.material.uniforms[ 'config' ].value.y = halfCycle; // flowMapOffset1 |
|
|
|
this.material.uniforms[ 'config' ].value.z = halfCycle; // halfCycle |
|
|
|
this.material.uniforms[ 'config' ].value.w = scale; // scale |
|
// functions |
|
|
|
function updateTextureMatrix( camera ) { |
|
|
|
textureMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); |
|
textureMatrix.multiply( camera.projectionMatrix ); |
|
textureMatrix.multiply( camera.matrixWorldInverse ); |
|
textureMatrix.multiply( scope.matrixWorld ); |
|
|
|
} |
|
|
|
function updateFlow() { |
|
|
|
const delta = clock.getDelta(); |
|
const config = scope.material.uniforms[ 'config' ]; |
|
config.value.x += flowSpeed * delta; // flowMapOffset0 |
|
|
|
config.value.y = config.value.x + halfCycle; // flowMapOffset1 |
|
// Important: The distance between offsets should be always the value of "halfCycle". |
|
// Moreover, both offsets should be in the range of [ 0, cycle ]. |
|
// This approach ensures a smooth water flow and avoids "reset" effects. |
|
|
|
if ( config.value.x >= cycle ) { |
|
|
|
config.value.x = 0; |
|
config.value.y = halfCycle; |
|
|
|
} else if ( config.value.y >= cycle ) { |
|
|
|
config.value.y = config.value.y - cycle; |
|
|
|
} |
|
|
|
} // |
|
|
|
|
|
this.onBeforeRender = function ( renderer, scene, camera ) { |
|
|
|
updateTextureMatrix( camera ); |
|
updateFlow(); |
|
scope.visible = false; |
|
reflector.matrixWorld.copy( scope.matrixWorld ); |
|
refractor.matrixWorld.copy( scope.matrixWorld ); |
|
reflector.onBeforeRender( renderer, scene, camera ); |
|
refractor.onBeforeRender( renderer, scene, camera ); |
|
scope.visible = true; |
|
|
|
}; |
|
|
|
} |
|
|
|
} |
|
|
|
Water.prototype.isWater = true; |
|
Water.WaterShader = { |
|
uniforms: { |
|
'color': { |
|
type: 'c', |
|
value: null |
|
}, |
|
'reflectivity': { |
|
type: 'f', |
|
value: 0 |
|
}, |
|
'tReflectionMap': { |
|
type: 't', |
|
value: null |
|
}, |
|
'tRefractionMap': { |
|
type: 't', |
|
value: null |
|
}, |
|
'tNormalMap0': { |
|
type: 't', |
|
value: null |
|
}, |
|
'tNormalMap1': { |
|
type: 't', |
|
value: null |
|
}, |
|
'textureMatrix': { |
|
type: 'm4', |
|
value: null |
|
}, |
|
'config': { |
|
type: 'v4', |
|
value: new THREE.Vector4() |
|
} |
|
}, |
|
vertexShader: |
|
/* glsl */ |
|
` |
|
|
|
#include <common> |
|
#include <fog_pars_vertex> |
|
#include <logdepthbuf_pars_vertex> |
|
|
|
uniform mat4 textureMatrix; |
|
|
|
varying vec4 vCoord; |
|
varying vec2 vUv; |
|
varying vec3 vToEye; |
|
|
|
void main() { |
|
|
|
vUv = uv; |
|
vCoord = textureMatrix * vec4( position, 1.0 ); |
|
|
|
vec4 worldPosition = modelMatrix * vec4( position, 1.0 ); |
|
vToEye = cameraPosition - worldPosition.xyz; |
|
|
|
vec4 mvPosition = viewMatrix * worldPosition; // used in fog_vertex |
|
gl_Position = projectionMatrix * mvPosition; |
|
|
|
#include <logdepthbuf_vertex> |
|
#include <fog_vertex> |
|
|
|
}`, |
|
fragmentShader: |
|
/* glsl */ |
|
` |
|
|
|
#include <common> |
|
#include <fog_pars_fragment> |
|
#include <logdepthbuf_pars_fragment> |
|
|
|
uniform sampler2D tReflectionMap; |
|
uniform sampler2D tRefractionMap; |
|
uniform sampler2D tNormalMap0; |
|
uniform sampler2D tNormalMap1; |
|
|
|
#ifdef USE_FLOWMAP |
|
uniform sampler2D tFlowMap; |
|
#else |
|
uniform vec2 flowDirection; |
|
#endif |
|
|
|
uniform vec3 color; |
|
uniform float reflectivity; |
|
uniform vec4 config; |
|
|
|
varying vec4 vCoord; |
|
varying vec2 vUv; |
|
varying vec3 vToEye; |
|
|
|
void main() { |
|
|
|
#include <logdepthbuf_fragment> |
|
|
|
float flowMapOffset0 = config.x; |
|
float flowMapOffset1 = config.y; |
|
float halfCycle = config.z; |
|
float scale = config.w; |
|
|
|
vec3 toEye = normalize( vToEye ); |
|
|
|
// determine flow direction |
|
vec2 flow; |
|
#ifdef USE_FLOWMAP |
|
flow = texture2D( tFlowMap, vUv ).rg * 2.0 - 1.0; |
|
#else |
|
flow = flowDirection; |
|
#endif |
|
flow.x *= - 1.0; |
|
|
|
// sample normal maps (distort uvs with flowdata) |
|
vec4 normalColor0 = texture2D( tNormalMap0, ( vUv * scale ) + flow * flowMapOffset0 ); |
|
vec4 normalColor1 = texture2D( tNormalMap1, ( vUv * scale ) + flow * flowMapOffset1 ); |
|
|
|
// linear interpolate to get the final normal color |
|
float flowLerp = abs( halfCycle - flowMapOffset0 ) / halfCycle; |
|
vec4 normalColor = mix( normalColor0, normalColor1, flowLerp ); |
|
|
|
// calculate normal vector |
|
vec3 normal = normalize( vec3( normalColor.r * 2.0 - 1.0, normalColor.b, normalColor.g * 2.0 - 1.0 ) ); |
|
|
|
// calculate the fresnel term to blend reflection and refraction maps |
|
float theta = max( dot( toEye, normal ), 0.0 ); |
|
float reflectance = reflectivity + ( 1.0 - reflectivity ) * pow( ( 1.0 - theta ), 5.0 ); |
|
|
|
// calculate final uv coords |
|
vec3 coord = vCoord.xyz / vCoord.w; |
|
vec2 uv = coord.xy + coord.z * normal.xz * 0.05; |
|
|
|
vec4 reflectColor = texture2D( tReflectionMap, vec2( 1.0 - uv.x, uv.y ) ); |
|
vec4 refractColor = texture2D( tRefractionMap, uv ); |
|
|
|
// multiply water color with the mix of both textures |
|
gl_FragColor = vec4( color, 1.0 ) * mix( refractColor, reflectColor, reflectance ); |
|
|
|
#include <tonemapping_fragment> |
|
#include <encodings_fragment> |
|
#include <fog_fragment> |
|
|
|
}` |
|
}; |
|
|
|
THREE.Water = Water; |
|
|
|
} )();
|
|
|