Dies ist das Repository meines kleinen Portfolios.
Im Hintergrund läuft eine Planetensimulation, geschrieben in JavaScript und Three.js.
Die zu sehenden Texturen stammen von:
https://www.solarsystemscope.com/textures/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
525 lines
13 KiB
525 lines
13 KiB
import { |
|
Line3, |
|
Mesh, |
|
Plane, |
|
Vector3 |
|
} from 'three'; |
|
import { ConvexGeometry } from '../geometries/ConvexGeometry.js'; |
|
|
|
/** |
|
* @fileoverview This class can be used to subdivide a convex Geometry object into pieces. |
|
* |
|
* Usage: |
|
* |
|
* Use the function prepareBreakableObject to prepare a Mesh object to be broken. |
|
* |
|
* Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane) |
|
* |
|
* Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them. |
|
* |
|
* Requisites for the object: |
|
* |
|
* - Mesh object must have a BufferGeometry (not Geometry) and a Material |
|
* |
|
* - Vertex normals must be planar (not smoothed) |
|
* |
|
* - The geometry must be convex (this is not checked in the library). You can create convex |
|
* geometries with ConvexGeometry. The BoxGeometry, SphereGeometry and other convex primitives |
|
* can also be used. |
|
* |
|
* Note: This lib adds member variables to object's userData member (see prepareBreakableObject function) |
|
* Use with caution and read the code when using with other libs. |
|
* |
|
* @param {double} minSizeForBreak Min size a debris can have to break. |
|
* @param {double} smallDelta Max distance to consider that a point belongs to a plane. |
|
* |
|
*/ |
|
|
|
const _v1 = new Vector3(); |
|
|
|
class ConvexObjectBreaker { |
|
|
|
constructor( minSizeForBreak = 1.4, smallDelta = 0.0001 ) { |
|
|
|
this.minSizeForBreak = minSizeForBreak; |
|
this.smallDelta = smallDelta; |
|
|
|
this.tempLine1 = new Line3(); |
|
this.tempPlane1 = new Plane(); |
|
this.tempPlane2 = new Plane(); |
|
this.tempPlane_Cut = new Plane(); |
|
this.tempCM1 = new Vector3(); |
|
this.tempCM2 = new Vector3(); |
|
this.tempVector3 = new Vector3(); |
|
this.tempVector3_2 = new Vector3(); |
|
this.tempVector3_3 = new Vector3(); |
|
this.tempVector3_P0 = new Vector3(); |
|
this.tempVector3_P1 = new Vector3(); |
|
this.tempVector3_P2 = new Vector3(); |
|
this.tempVector3_N0 = new Vector3(); |
|
this.tempVector3_N1 = new Vector3(); |
|
this.tempVector3_AB = new Vector3(); |
|
this.tempVector3_CB = new Vector3(); |
|
this.tempResultObjects = { object1: null, object2: null }; |
|
|
|
this.segments = []; |
|
const n = 30 * 30; |
|
for ( let i = 0; i < n; i ++ ) this.segments[ i ] = false; |
|
|
|
} |
|
|
|
prepareBreakableObject( object, mass, velocity, angularVelocity, breakable ) { |
|
|
|
// object is a Object3d (normally a Mesh), must have a BufferGeometry, and it must be convex. |
|
// Its material property is propagated to its children (sub-pieces) |
|
// mass must be > 0 |
|
|
|
if ( ! object.geometry.isBufferGeometry ) { |
|
|
|
console.error( 'THREE.ConvexObjectBreaker.prepareBreakableObject(): Parameter object must have a BufferGeometry.' ); |
|
|
|
} |
|
|
|
const userData = object.userData; |
|
userData.mass = mass; |
|
userData.velocity = velocity.clone(); |
|
userData.angularVelocity = angularVelocity.clone(); |
|
userData.breakable = breakable; |
|
|
|
} |
|
|
|
/* |
|
* @param {int} maxRadialIterations Iterations for radial cuts. |
|
* @param {int} maxRandomIterations Max random iterations for not-radial cuts |
|
* |
|
* Returns the array of pieces |
|
*/ |
|
subdivideByImpact( object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations ) { |
|
|
|
const debris = []; |
|
|
|
const tempPlane1 = this.tempPlane1; |
|
const tempPlane2 = this.tempPlane2; |
|
|
|
this.tempVector3.addVectors( pointOfImpact, normal ); |
|
tempPlane1.setFromCoplanarPoints( pointOfImpact, object.position, this.tempVector3 ); |
|
|
|
const maxTotalIterations = maxRandomIterations + maxRadialIterations; |
|
|
|
const scope = this; |
|
|
|
function subdivideRadial( subObject, startAngle, endAngle, numIterations ) { |
|
|
|
if ( Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations ) { |
|
|
|
debris.push( subObject ); |
|
|
|
return; |
|
|
|
} |
|
|
|
let angle = Math.PI; |
|
|
|
if ( numIterations === 0 ) { |
|
|
|
tempPlane2.normal.copy( tempPlane1.normal ); |
|
tempPlane2.constant = tempPlane1.constant; |
|
|
|
} else { |
|
|
|
if ( numIterations <= maxRadialIterations ) { |
|
|
|
angle = ( endAngle - startAngle ) * ( 0.2 + 0.6 * Math.random() ) + startAngle; |
|
|
|
// Rotate tempPlane2 at impact point around normal axis and the angle |
|
scope.tempVector3_2.copy( object.position ).sub( pointOfImpact ).applyAxisAngle( normal, angle ).add( pointOfImpact ); |
|
tempPlane2.setFromCoplanarPoints( pointOfImpact, scope.tempVector3, scope.tempVector3_2 ); |
|
|
|
} else { |
|
|
|
angle = ( ( 0.5 * ( numIterations & 1 ) ) + 0.2 * ( 2 - Math.random() ) ) * Math.PI; |
|
|
|
// Rotate tempPlane2 at object position around normal axis and the angle |
|
scope.tempVector3_2.copy( pointOfImpact ).sub( subObject.position ).applyAxisAngle( normal, angle ).add( subObject.position ); |
|
scope.tempVector3_3.copy( normal ).add( subObject.position ); |
|
tempPlane2.setFromCoplanarPoints( subObject.position, scope.tempVector3_3, scope.tempVector3_2 ); |
|
|
|
} |
|
|
|
} |
|
|
|
// Perform the cut |
|
scope.cutByPlane( subObject, tempPlane2, scope.tempResultObjects ); |
|
|
|
const obj1 = scope.tempResultObjects.object1; |
|
const obj2 = scope.tempResultObjects.object2; |
|
|
|
if ( obj1 ) { |
|
|
|
subdivideRadial( obj1, startAngle, angle, numIterations + 1 ); |
|
|
|
} |
|
|
|
if ( obj2 ) { |
|
|
|
subdivideRadial( obj2, angle, endAngle, numIterations + 1 ); |
|
|
|
} |
|
|
|
} |
|
|
|
subdivideRadial( object, 0, 2 * Math.PI, 0 ); |
|
|
|
return debris; |
|
|
|
} |
|
|
|
cutByPlane( object, plane, output ) { |
|
|
|
// Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut. |
|
// object2 can be null if the plane doesn't cut the object. |
|
// object1 can be null only in case of internal error |
|
// Returned value is number of pieces, 0 for error. |
|
|
|
const geometry = object.geometry; |
|
const coords = geometry.attributes.position.array; |
|
const normals = geometry.attributes.normal.array; |
|
|
|
const numPoints = coords.length / 3; |
|
let numFaces = numPoints / 3; |
|
|
|
let indices = geometry.getIndex(); |
|
|
|
if ( indices ) { |
|
|
|
indices = indices.array; |
|
numFaces = indices.length / 3; |
|
|
|
} |
|
|
|
function getVertexIndex( faceIdx, vert ) { |
|
|
|
// vert = 0, 1 or 2. |
|
|
|
const idx = faceIdx * 3 + vert; |
|
|
|
return indices ? indices[ idx ] : idx; |
|
|
|
} |
|
|
|
const points1 = []; |
|
const points2 = []; |
|
|
|
const delta = this.smallDelta; |
|
|
|
// Reset segments mark |
|
const numPointPairs = numPoints * numPoints; |
|
for ( let i = 0; i < numPointPairs; i ++ ) this.segments[ i ] = false; |
|
|
|
const p0 = this.tempVector3_P0; |
|
const p1 = this.tempVector3_P1; |
|
const n0 = this.tempVector3_N0; |
|
const n1 = this.tempVector3_N1; |
|
|
|
// Iterate through the faces to mark edges shared by coplanar faces |
|
for ( let i = 0; i < numFaces - 1; i ++ ) { |
|
|
|
const a1 = getVertexIndex( i, 0 ); |
|
const b1 = getVertexIndex( i, 1 ); |
|
const c1 = getVertexIndex( i, 2 ); |
|
|
|
// Assuming all 3 vertices have the same normal |
|
n0.set( normals[ a1 ], normals[ a1 ] + 1, normals[ a1 ] + 2 ); |
|
|
|
for ( let j = i + 1; j < numFaces; j ++ ) { |
|
|
|
const a2 = getVertexIndex( j, 0 ); |
|
const b2 = getVertexIndex( j, 1 ); |
|
const c2 = getVertexIndex( j, 2 ); |
|
|
|
// Assuming all 3 vertices have the same normal |
|
n1.set( normals[ a2 ], normals[ a2 ] + 1, normals[ a2 ] + 2 ); |
|
|
|
const coplanar = 1 - n0.dot( n1 ) < delta; |
|
|
|
if ( coplanar ) { |
|
|
|
if ( a1 === a2 || a1 === b2 || a1 === c2 ) { |
|
|
|
if ( b1 === a2 || b1 === b2 || b1 === c2 ) { |
|
|
|
this.segments[ a1 * numPoints + b1 ] = true; |
|
this.segments[ b1 * numPoints + a1 ] = true; |
|
|
|
} else { |
|
|
|
this.segments[ c1 * numPoints + a1 ] = true; |
|
this.segments[ a1 * numPoints + c1 ] = true; |
|
|
|
} |
|
|
|
} else if ( b1 === a2 || b1 === b2 || b1 === c2 ) { |
|
|
|
this.segments[ c1 * numPoints + b1 ] = true; |
|
this.segments[ b1 * numPoints + c1 ] = true; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
// Transform the plane to object local space |
|
const localPlane = this.tempPlane_Cut; |
|
object.updateMatrix(); |
|
ConvexObjectBreaker.transformPlaneToLocalSpace( plane, object.matrix, localPlane ); |
|
|
|
// Iterate through the faces adding points to both pieces |
|
for ( let i = 0; i < numFaces; i ++ ) { |
|
|
|
const va = getVertexIndex( i, 0 ); |
|
const vb = getVertexIndex( i, 1 ); |
|
const vc = getVertexIndex( i, 2 ); |
|
|
|
for ( let segment = 0; segment < 3; segment ++ ) { |
|
|
|
const i0 = segment === 0 ? va : ( segment === 1 ? vb : vc ); |
|
const i1 = segment === 0 ? vb : ( segment === 1 ? vc : va ); |
|
|
|
const segmentState = this.segments[ i0 * numPoints + i1 ]; |
|
|
|
if ( segmentState ) continue; // The segment already has been processed in another face |
|
|
|
// Mark segment as processed (also inverted segment) |
|
this.segments[ i0 * numPoints + i1 ] = true; |
|
this.segments[ i1 * numPoints + i0 ] = true; |
|
|
|
p0.set( coords[ 3 * i0 ], coords[ 3 * i0 + 1 ], coords[ 3 * i0 + 2 ] ); |
|
p1.set( coords[ 3 * i1 ], coords[ 3 * i1 + 1 ], coords[ 3 * i1 + 2 ] ); |
|
|
|
// mark: 1 for negative side, 2 for positive side, 3 for coplanar point |
|
let mark0 = 0; |
|
|
|
let d = localPlane.distanceToPoint( p0 ); |
|
|
|
if ( d > delta ) { |
|
|
|
mark0 = 2; |
|
points2.push( p0.clone() ); |
|
|
|
} else if ( d < - delta ) { |
|
|
|
mark0 = 1; |
|
points1.push( p0.clone() ); |
|
|
|
} else { |
|
|
|
mark0 = 3; |
|
points1.push( p0.clone() ); |
|
points2.push( p0.clone() ); |
|
|
|
} |
|
|
|
// mark: 1 for negative side, 2 for positive side, 3 for coplanar point |
|
let mark1 = 0; |
|
|
|
d = localPlane.distanceToPoint( p1 ); |
|
|
|
if ( d > delta ) { |
|
|
|
mark1 = 2; |
|
points2.push( p1.clone() ); |
|
|
|
} else if ( d < - delta ) { |
|
|
|
mark1 = 1; |
|
points1.push( p1.clone() ); |
|
|
|
} else { |
|
|
|
mark1 = 3; |
|
points1.push( p1.clone() ); |
|
points2.push( p1.clone() ); |
|
|
|
} |
|
|
|
if ( ( mark0 === 1 && mark1 === 2 ) || ( mark0 === 2 && mark1 === 1 ) ) { |
|
|
|
// Intersection of segment with the plane |
|
|
|
this.tempLine1.start.copy( p0 ); |
|
this.tempLine1.end.copy( p1 ); |
|
|
|
let intersection = new Vector3(); |
|
intersection = localPlane.intersectLine( this.tempLine1, intersection ); |
|
|
|
if ( intersection === null ) { |
|
|
|
// Shouldn't happen |
|
console.error( 'Internal error: segment does not intersect plane.' ); |
|
output.segmentedObject1 = null; |
|
output.segmentedObject2 = null; |
|
return 0; |
|
|
|
} |
|
|
|
points1.push( intersection ); |
|
points2.push( intersection.clone() ); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
// Calculate debris mass (very fast and imprecise): |
|
const newMass = object.userData.mass * 0.5; |
|
|
|
// Calculate debris Center of Mass (again fast and imprecise) |
|
this.tempCM1.set( 0, 0, 0 ); |
|
let radius1 = 0; |
|
const numPoints1 = points1.length; |
|
|
|
if ( numPoints1 > 0 ) { |
|
|
|
for ( let i = 0; i < numPoints1; i ++ ) this.tempCM1.add( points1[ i ] ); |
|
|
|
this.tempCM1.divideScalar( numPoints1 ); |
|
for ( let i = 0; i < numPoints1; i ++ ) { |
|
|
|
const p = points1[ i ]; |
|
p.sub( this.tempCM1 ); |
|
radius1 = Math.max( radius1, p.x, p.y, p.z ); |
|
|
|
} |
|
|
|
this.tempCM1.add( object.position ); |
|
|
|
} |
|
|
|
this.tempCM2.set( 0, 0, 0 ); |
|
let radius2 = 0; |
|
const numPoints2 = points2.length; |
|
if ( numPoints2 > 0 ) { |
|
|
|
for ( let i = 0; i < numPoints2; i ++ ) this.tempCM2.add( points2[ i ] ); |
|
|
|
this.tempCM2.divideScalar( numPoints2 ); |
|
for ( let i = 0; i < numPoints2; i ++ ) { |
|
|
|
const p = points2[ i ]; |
|
p.sub( this.tempCM2 ); |
|
radius2 = Math.max( radius2, p.x, p.y, p.z ); |
|
|
|
} |
|
|
|
this.tempCM2.add( object.position ); |
|
|
|
} |
|
|
|
let object1 = null; |
|
let object2 = null; |
|
|
|
let numObjects = 0; |
|
|
|
if ( numPoints1 > 4 ) { |
|
|
|
object1 = new Mesh( new ConvexGeometry( points1 ), object.material ); |
|
object1.position.copy( this.tempCM1 ); |
|
object1.quaternion.copy( object.quaternion ); |
|
|
|
this.prepareBreakableObject( object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak ); |
|
|
|
numObjects ++; |
|
|
|
} |
|
|
|
if ( numPoints2 > 4 ) { |
|
|
|
object2 = new Mesh( new ConvexGeometry( points2 ), object.material ); |
|
object2.position.copy( this.tempCM2 ); |
|
object2.quaternion.copy( object.quaternion ); |
|
|
|
this.prepareBreakableObject( object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak ); |
|
|
|
numObjects ++; |
|
|
|
} |
|
|
|
output.object1 = object1; |
|
output.object2 = object2; |
|
|
|
return numObjects; |
|
|
|
} |
|
|
|
static transformFreeVector( v, m ) { |
|
|
|
// input: |
|
// vector interpreted as a free vector |
|
// THREE.Matrix4 orthogonal matrix (matrix without scale) |
|
|
|
const x = v.x, y = v.y, z = v.z; |
|
const e = m.elements; |
|
|
|
v.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; |
|
v.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; |
|
v.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; |
|
|
|
return v; |
|
|
|
} |
|
|
|
static transformFreeVectorInverse( v, m ) { |
|
|
|
// input: |
|
// vector interpreted as a free vector |
|
// THREE.Matrix4 orthogonal matrix (matrix without scale) |
|
|
|
const x = v.x, y = v.y, z = v.z; |
|
const e = m.elements; |
|
|
|
v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z; |
|
v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z; |
|
v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z; |
|
|
|
return v; |
|
|
|
} |
|
|
|
static transformTiedVectorInverse( v, m ) { |
|
|
|
// input: |
|
// vector interpreted as a tied (ordinary) vector |
|
// THREE.Matrix4 orthogonal matrix (matrix without scale) |
|
|
|
const x = v.x, y = v.y, z = v.z; |
|
const e = m.elements; |
|
|
|
v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z - e[ 12 ]; |
|
v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z - e[ 13 ]; |
|
v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z - e[ 14 ]; |
|
|
|
return v; |
|
|
|
} |
|
|
|
static transformPlaneToLocalSpace( plane, m, resultPlane ) { |
|
|
|
resultPlane.normal.copy( plane.normal ); |
|
resultPlane.constant = plane.constant; |
|
|
|
const referencePoint = ConvexObjectBreaker.transformTiedVectorInverse( plane.coplanarPoint( _v1 ), m ); |
|
|
|
ConvexObjectBreaker.transformFreeVectorInverse( resultPlane.normal, m ); |
|
|
|
// recalculate constant (like in setFromNormalAndCoplanarPoint) |
|
resultPlane.constant = - referencePoint.dot( resultPlane.normal ); |
|
|
|
} |
|
|
|
} |
|
|
|
export { ConvexObjectBreaker };
|
|
|