Dies ist das Repository meines kleinen Portfolios.
Im Hintergrund läuft eine Planetensimulation, geschrieben in JavaScript und Three.js.
Die zu sehenden Texturen stammen von:
https://www.solarsystemscope.com/textures/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
219 lines
6.7 KiB
219 lines
6.7 KiB
import { |
|
BackSide, |
|
BoxGeometry, |
|
Mesh, |
|
ShaderMaterial, |
|
UniformsUtils, |
|
Vector3 |
|
} from 'three'; |
|
|
|
/** |
|
* Based on "A Practical Analytic Model for Daylight" |
|
* aka The Preetham Model, the de facto standard analytic skydome model |
|
* https://www.researchgate.net/publication/220720443_A_Practical_Analytic_Model_for_Daylight |
|
* |
|
* First implemented by Simon Wallner |
|
* http://simonwallner.at/project/atmospheric-scattering/ |
|
* |
|
* Improved by Martin Upitis |
|
* http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR |
|
* |
|
* Three.js integration by zz85 http://twitter.com/blurspline |
|
*/ |
|
|
|
class Sky extends Mesh { |
|
|
|
constructor() { |
|
|
|
const shader = Sky.SkyShader; |
|
|
|
const material = new ShaderMaterial( { |
|
name: 'SkyShader', |
|
fragmentShader: shader.fragmentShader, |
|
vertexShader: shader.vertexShader, |
|
uniforms: UniformsUtils.clone( shader.uniforms ), |
|
side: BackSide, |
|
depthWrite: false |
|
} ); |
|
|
|
super( new BoxGeometry( 1, 1, 1 ), material ); |
|
|
|
} |
|
|
|
} |
|
|
|
Sky.prototype.isSky = true; |
|
|
|
Sky.SkyShader = { |
|
|
|
uniforms: { |
|
'turbidity': { value: 2 }, |
|
'rayleigh': { value: 1 }, |
|
'mieCoefficient': { value: 0.005 }, |
|
'mieDirectionalG': { value: 0.8 }, |
|
'sunPosition': { value: new Vector3() }, |
|
'up': { value: new Vector3( 0, 1, 0 ) } |
|
}, |
|
|
|
vertexShader: /* glsl */` |
|
uniform vec3 sunPosition; |
|
uniform float rayleigh; |
|
uniform float turbidity; |
|
uniform float mieCoefficient; |
|
uniform vec3 up; |
|
|
|
varying vec3 vWorldPosition; |
|
varying vec3 vSunDirection; |
|
varying float vSunfade; |
|
varying vec3 vBetaR; |
|
varying vec3 vBetaM; |
|
varying float vSunE; |
|
|
|
// constants for atmospheric scattering |
|
const float e = 2.71828182845904523536028747135266249775724709369995957; |
|
const float pi = 3.141592653589793238462643383279502884197169; |
|
|
|
// wavelength of used primaries, according to preetham |
|
const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 ); |
|
// this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function: |
|
// (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn)) |
|
const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 ); |
|
|
|
// mie stuff |
|
// K coefficient for the primaries |
|
const float v = 4.0; |
|
const vec3 K = vec3( 0.686, 0.678, 0.666 ); |
|
// MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K |
|
const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 ); |
|
|
|
// earth shadow hack |
|
// cutoffAngle = pi / 1.95; |
|
const float cutoffAngle = 1.6110731556870734; |
|
const float steepness = 1.5; |
|
const float EE = 1000.0; |
|
|
|
float sunIntensity( float zenithAngleCos ) { |
|
zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 ); |
|
return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) ); |
|
} |
|
|
|
vec3 totalMie( float T ) { |
|
float c = ( 0.2 * T ) * 10E-18; |
|
return 0.434 * c * MieConst; |
|
} |
|
|
|
void main() { |
|
|
|
vec4 worldPosition = modelMatrix * vec4( position, 1.0 ); |
|
vWorldPosition = worldPosition.xyz; |
|
|
|
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); |
|
gl_Position.z = gl_Position.w; // set z to camera.far |
|
|
|
vSunDirection = normalize( sunPosition ); |
|
|
|
vSunE = sunIntensity( dot( vSunDirection, up ) ); |
|
|
|
vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 ); |
|
|
|
float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) ); |
|
|
|
// extinction (absorbtion + out scattering) |
|
// rayleigh coefficients |
|
vBetaR = totalRayleigh * rayleighCoefficient; |
|
|
|
// mie coefficients |
|
vBetaM = totalMie( turbidity ) * mieCoefficient; |
|
|
|
}`, |
|
|
|
fragmentShader: /* glsl */` |
|
varying vec3 vWorldPosition; |
|
varying vec3 vSunDirection; |
|
varying float vSunfade; |
|
varying vec3 vBetaR; |
|
varying vec3 vBetaM; |
|
varying float vSunE; |
|
|
|
uniform float mieDirectionalG; |
|
uniform vec3 up; |
|
|
|
const vec3 cameraPos = vec3( 0.0, 0.0, 0.0 ); |
|
|
|
// constants for atmospheric scattering |
|
const float pi = 3.141592653589793238462643383279502884197169; |
|
|
|
const float n = 1.0003; // refractive index of air |
|
const float N = 2.545E25; // number of molecules per unit volume for air at 288.15K and 1013mb (sea level -45 celsius) |
|
|
|
// optical length at zenith for molecules |
|
const float rayleighZenithLength = 8.4E3; |
|
const float mieZenithLength = 1.25E3; |
|
// 66 arc seconds -> degrees, and the cosine of that |
|
const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324; |
|
|
|
// 3.0 / ( 16.0 * pi ) |
|
const float THREE_OVER_SIXTEENPI = 0.05968310365946075; |
|
// 1.0 / ( 4.0 * pi ) |
|
const float ONE_OVER_FOURPI = 0.07957747154594767; |
|
|
|
float rayleighPhase( float cosTheta ) { |
|
return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) ); |
|
} |
|
|
|
float hgPhase( float cosTheta, float g ) { |
|
float g2 = pow( g, 2.0 ); |
|
float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 ); |
|
return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse ); |
|
} |
|
|
|
void main() { |
|
|
|
vec3 direction = normalize( vWorldPosition - cameraPos ); |
|
|
|
// optical length |
|
// cutoff angle at 90 to avoid singularity in next formula. |
|
float zenithAngle = acos( max( 0.0, dot( up, direction ) ) ); |
|
float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) ); |
|
float sR = rayleighZenithLength * inverse; |
|
float sM = mieZenithLength * inverse; |
|
|
|
// combined extinction factor |
|
vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) ); |
|
|
|
// in scattering |
|
float cosTheta = dot( direction, vSunDirection ); |
|
|
|
float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 ); |
|
vec3 betaRTheta = vBetaR * rPhase; |
|
|
|
float mPhase = hgPhase( cosTheta, mieDirectionalG ); |
|
vec3 betaMTheta = vBetaM * mPhase; |
|
|
|
vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) ); |
|
Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) ); |
|
|
|
// nightsky |
|
float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2] |
|
float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2] |
|
vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 ); |
|
vec3 L0 = vec3( 0.1 ) * Fex; |
|
|
|
// composition + solar disc |
|
float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta ); |
|
L0 += ( vSunE * 19000.0 * Fex ) * sundisk; |
|
|
|
vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 ); |
|
|
|
vec3 retColor = pow( texColor, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) ); |
|
|
|
gl_FragColor = vec4( retColor, 1.0 ); |
|
|
|
#include <tonemapping_fragment> |
|
#include <encodings_fragment> |
|
|
|
}` |
|
|
|
}; |
|
|
|
export { Sky };
|
|
|