Dies ist das Repository meines kleinen Portfolios.
Im Hintergrund läuft eine Planetensimulation, geschrieben in JavaScript und Three.js.
Die zu sehenden Texturen stammen von:
https://www.solarsystemscope.com/textures/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
229 lines
5.4 KiB
229 lines
5.4 KiB
import { |
|
Vector3 |
|
} from 'three'; |
|
|
|
|
|
/** |
|
* Generates 2D-Coordinates in a very fast way. |
|
* |
|
* Based on work by: |
|
* @link http://www.openprocessing.org/sketch/15493 |
|
* |
|
* @param center Center of Hilbert curve. |
|
* @param size Total width of Hilbert curve. |
|
* @param iterations Number of subdivisions. |
|
* @param v0 Corner index -X, -Z. |
|
* @param v1 Corner index -X, +Z. |
|
* @param v2 Corner index +X, +Z. |
|
* @param v3 Corner index +X, -Z. |
|
*/ |
|
function hilbert2D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3 ) { |
|
|
|
const half = size / 2; |
|
|
|
const vec_s = [ |
|
new Vector3( center.x - half, center.y, center.z - half ), |
|
new Vector3( center.x - half, center.y, center.z + half ), |
|
new Vector3( center.x + half, center.y, center.z + half ), |
|
new Vector3( center.x + half, center.y, center.z - half ) |
|
]; |
|
|
|
const vec = [ |
|
vec_s[ v0 ], |
|
vec_s[ v1 ], |
|
vec_s[ v2 ], |
|
vec_s[ v3 ] |
|
]; |
|
|
|
// Recurse iterations |
|
if ( 0 <= -- iterations ) { |
|
|
|
const tmp = []; |
|
|
|
Array.prototype.push.apply( tmp, hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ) ); |
|
Array.prototype.push.apply( tmp, hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ) ); |
|
Array.prototype.push.apply( tmp, hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ) ); |
|
Array.prototype.push.apply( tmp, hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 ) ); |
|
|
|
// Return recursive call |
|
return tmp; |
|
|
|
} |
|
|
|
// Return complete Hilbert Curve. |
|
return vec; |
|
|
|
} |
|
|
|
/** |
|
* Generates 3D-Coordinates in a very fast way. |
|
* |
|
* Based on work by: |
|
* @link https://openprocessing.org/user/5654 |
|
* |
|
* @param center Center of Hilbert curve. |
|
* @param size Total width of Hilbert curve. |
|
* @param iterations Number of subdivisions. |
|
* @param v0 Corner index -X, +Y, -Z. |
|
* @param v1 Corner index -X, +Y, +Z. |
|
* @param v2 Corner index -X, -Y, +Z. |
|
* @param v3 Corner index -X, -Y, -Z. |
|
* @param v4 Corner index +X, -Y, -Z. |
|
* @param v5 Corner index +X, -Y, +Z. |
|
* @param v6 Corner index +X, +Y, +Z. |
|
* @param v7 Corner index +X, +Y, -Z. |
|
*/ |
|
function hilbert3D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3, v4 = 4, v5 = 5, v6 = 6, v7 = 7 ) { |
|
|
|
// Default Vars |
|
const half = size / 2; |
|
|
|
const vec_s = [ |
|
new Vector3( center.x - half, center.y + half, center.z - half ), |
|
new Vector3( center.x - half, center.y + half, center.z + half ), |
|
new Vector3( center.x - half, center.y - half, center.z + half ), |
|
new Vector3( center.x - half, center.y - half, center.z - half ), |
|
new Vector3( center.x + half, center.y - half, center.z - half ), |
|
new Vector3( center.x + half, center.y - half, center.z + half ), |
|
new Vector3( center.x + half, center.y + half, center.z + half ), |
|
new Vector3( center.x + half, center.y + half, center.z - half ) |
|
]; |
|
|
|
const vec = [ |
|
vec_s[ v0 ], |
|
vec_s[ v1 ], |
|
vec_s[ v2 ], |
|
vec_s[ v3 ], |
|
vec_s[ v4 ], |
|
vec_s[ v5 ], |
|
vec_s[ v6 ], |
|
vec_s[ v7 ] |
|
]; |
|
|
|
// Recurse iterations |
|
if ( -- iterations >= 0 ) { |
|
|
|
const tmp = []; |
|
|
|
Array.prototype.push.apply( tmp, hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ) ); |
|
Array.prototype.push.apply( tmp, hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) ); |
|
Array.prototype.push.apply( tmp, hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) ); |
|
Array.prototype.push.apply( tmp, hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) ); |
|
Array.prototype.push.apply( tmp, hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) ); |
|
Array.prototype.push.apply( tmp, hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) ); |
|
Array.prototype.push.apply( tmp, hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) ); |
|
Array.prototype.push.apply( tmp, hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 ) ); |
|
|
|
// Return recursive call |
|
return tmp; |
|
|
|
} |
|
|
|
// Return complete Hilbert Curve. |
|
return vec; |
|
|
|
} |
|
|
|
/** |
|
* Generates a Gosper curve (lying in the XY plane) |
|
* |
|
* https://gist.github.com/nitaku/6521802 |
|
* |
|
* @param size The size of a single gosper island. |
|
*/ |
|
function gosper( size = 1 ) { |
|
|
|
function fractalize( config ) { |
|
|
|
let output; |
|
let input = config.axiom; |
|
|
|
for ( let i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) { |
|
|
|
output = ''; |
|
|
|
for ( let j = 0, jl = input.length; j < jl; j ++ ) { |
|
|
|
const char = input[ j ]; |
|
|
|
if ( char in config.rules ) { |
|
|
|
output += config.rules[ char ]; |
|
|
|
} else { |
|
|
|
output += char; |
|
|
|
} |
|
|
|
} |
|
|
|
input = output; |
|
|
|
} |
|
|
|
return output; |
|
|
|
} |
|
|
|
function toPoints( config ) { |
|
|
|
let currX = 0, currY = 0; |
|
let angle = 0; |
|
const path = [ 0, 0, 0 ]; |
|
const fractal = config.fractal; |
|
|
|
for ( let i = 0, l = fractal.length; i < l; i ++ ) { |
|
|
|
const char = fractal[ i ]; |
|
|
|
if ( char === '+' ) { |
|
|
|
angle += config.angle; |
|
|
|
} else if ( char === '-' ) { |
|
|
|
angle -= config.angle; |
|
|
|
} else if ( char === 'F' ) { |
|
|
|
currX += config.size * Math.cos( angle ); |
|
currY += - config.size * Math.sin( angle ); |
|
path.push( currX, currY, 0 ); |
|
|
|
} |
|
|
|
} |
|
|
|
return path; |
|
|
|
} |
|
|
|
// |
|
|
|
const gosper = fractalize( { |
|
axiom: 'A', |
|
steps: 4, |
|
rules: { |
|
A: 'A+BF++BF-FA--FAFA-BF+', |
|
B: '-FA+BFBF++BF+FA--FA-B' |
|
} |
|
} ); |
|
|
|
const points = toPoints( { |
|
fractal: gosper, |
|
size: size, |
|
angle: Math.PI / 3 // 60 degrees |
|
} ); |
|
|
|
return points; |
|
|
|
} |
|
|
|
|
|
|
|
export { |
|
hilbert2D, |
|
hilbert3D, |
|
gosper, |
|
};
|
|
|